Poliklinik für Kieferorthopädie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
Klinik und Poliklinik für Mund‑, Kiefer‑, Gesichtschirurgie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
J Orofac Orthop. 2024 Sep;85(5):327-339. doi: 10.1007/s00056-023-00460-8. Epub 2023 Mar 2.
To investigate a novel in-office three-dimensionally (3D) printed polymer bracket regarding slot precision and torque transmission.
Based on a 0.022″ bracket system, stereolithography was used to manufacture brackets (N = 30) from a high-performance polymer that met Medical Device Regulation (MDR) IIa requirements. Conventional metal and ceramic brackets were used for comparison. Slot precision was determined using calibrated plug gages. Torque transmission was measured after artificial aging. Palatal and vestibular crown torques were measured from 0 to 20° using titanium-molybdenum (T) and stainless steel (S) wires (0.019″ × 0.025″) in a biomechanical experimental setup. The Kruskal-Wallis test with post hoc test (Dunn-Bonferroni) was used for statistical analyses (significance level p < 0.05).
The slot sizes of all three bracket groups were within the tolerance range according to DIN 13996 (ceramic [C]: 0.581 ± 0.003 mm; metal [M]: 0.6 ± 0.005 mm; polymer [P]: 0.581 ± 0.010 mm). The maximum torque values of all bracket-arch combinations were above the clinically relevant range of 5-20 Nmm (PS: 30 ± 8.6 Nmm; PT: 27.8 ± 14.2 Nmm; CS: 24 ± 5.6 Nmm; CT: 19.9 ± 3.8 Nmm; MS: 21.4 ± 6.7 Nmm; MT: 16.7 ± 4.6 Nmm).
The novel, in-office manufactured polymer bracket showed comparable results to established bracket materials regarding slot precision and torque transmission. Given its high individualization possibilities as well as enabling an entire in-house supply chain, the novel polymer brackets bear high potential of future usage for orthodontic appliances.
研究一种新型的诊室三维(3D)打印聚合物托槽,以评估其槽型精度和转矩传递性能。
基于 0.022 英寸托槽系统,使用立体光固化技术制造聚合物托槽(N=30),该聚合物符合医疗器械法规(MDR)IIa 要求。使用传统的金属和陶瓷托槽进行比较。使用校准的插塞规测量槽型精度。经过人工老化后测量转矩传递。在生物力学实验装置中,使用钛钼(T)和不锈钢(S)丝(0.019"×0.025"),从 0°至 20°测量腭侧和颊侧冠转矩。采用 Kruskal-Wallis 检验和事后检验(Dunn-Bonferroni)进行统计学分析(显著性水平 p<0.05)。
根据 DIN 13996(陶瓷[C]:0.581±0.003mm;金属[M]:0.6±0.005mm;聚合物[P]:0.581±0.010mm),所有三组托槽的槽宽均在公差范围内。所有托槽-弓丝组合的最大转矩值均高于 5-20 Nmm 的临床相关范围(PS:30±8.6 Nmm;PT:27.8±14.2 Nmm;CS:24±5.6 Nmm;CT:19.9±3.8 Nmm;MS:21.4±6.7 Nmm;MT:16.7±4.6 Nmm)。
新型的诊室制造聚合物托槽在槽型精度和转矩传递方面与传统的托槽材料具有相当的结果。鉴于其高度的个性化制造可能性以及能够实现整个内部供应链,新型聚合物托槽在未来的正畸治疗中有很大的应用潜力。