State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, People's Republic of China.
Chemical Engineering and Renewable Energy, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.
J Phys Chem B. 2023 Mar 16;127(10):2224-2236. doi: 10.1021/acs.jpcb.2c06993. Epub 2023 Mar 2.
Optimizing electrolyte formulations is key to improving performance of Li-/Na-ion batteries, where transport properties (diffusion coefficient, viscosity) and permittivity need to be predicted as functions of temperature, salt concentration and solvent composition. More efficient and reliable simulation models are urgently needed, owing to the high cost of experimental methods and the lack of united-atom molecular dynamics force fields validated for electrolyte solvents. Here the computationally efficient TraPPE united-atom force field is extended to be compatible with carbonate solvents, optimizing the charges and dihedral potential. Computing the properties of electrolyte solvents, ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and dimethoxyethane (DME), we observe that the average absolute errors in the density, self-diffusion coefficient, permittivity, viscosity, and surface tension are approximately 15% of the corresponding experimental values. Results compare favorably to all-atom CHARMM and OPLS-AA force fields, offering computational performance improvement of at least 80%. We further use TraPPE to predict the structure and properties of LiPF salt in these solvents and their mixtures. EC and PC form complete solvation shells around Li ions, while the salt in DMC forms chain-like structures. In the poorest solvent, DME, LiPF forms globular clusters despite DME's higher permittivity than DMC.
优化电解液配方是提高锂离子/钠离子电池性能的关键,其中需要预测传输特性(扩散系数、粘度)和介电常数作为温度、盐浓度和溶剂组成的函数。由于实验方法成本高,并且缺乏针对电解质溶剂验证的统一原子分子动力学力场,因此迫切需要更高效、更可靠的模拟模型。本文扩展了计算效率高的 TraPPE 统一原子力场,使其与碳酸盐溶剂兼容,优化了电荷和二面角势。计算了电解质溶剂碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)和二乙二醇二甲醚(DME)的性质,我们发现密度、自扩散系数、介电常数、粘度和表面张力的平均绝对误差约为实验值的 15%。结果与全原子 CHARMM 和 OPLS-AA 力场相比具有可比性,计算性能提高至少 80%。我们进一步使用 TraPPE 预测了 LiPF 盐在这些溶剂及其混合物中的结构和性质。EC 和 PC 在锂离子周围形成完整的溶剂化壳,而盐在 DMC 中形成链状结构。在最贫溶剂 DME 中,尽管 DME 的介电常数高于 DMC,但 LiPF 仍形成球形团簇。