Suppr超能文献

社区学院的定量生物学:一个生物学和数学教师网络,专注于提高学生的数值和定量技能。

Quantitative Biology at Community Colleges, a Network of Biology and Mathematics Faculty Focused on Improving Numerical and Quantitative Skills of Students.

机构信息

Science Department, Lansing Community College, Lansing, MI 48933.

BioQUEST Curriculum Consortium, Raymond, NH 03077.

出版信息

CBE Life Sci Educ. 2023 Jun;22(2):ar16. doi: 10.1187/cbe.21-09-0244.

Abstract

Mastery of quantitative skills is increasingly critical for student success in life sciences, but few curricula adequately incorporate quantitative skills. Quantitative Biology at Community Colleges (QB@CC) is designed to address this need by building a grassroots consortium of community college faculty to 1) engage in interdisciplinary partnerships that increase participant confidence in life science, mathematics, and statistics domains; 2) generate and publish a collection of quantitative skills-focused open education resources (OER); and 3) disseminate these OER and pedagogical practices widely, in turn expanding the network. Currently in its third year, QB@CC has recruited 70 faculty into the network and created 20 modules. Modules can be accessed by interested biology and mathematics educators in high school, 2-year, and 4-year institutions. Here, we use survey responses, focus group interviews, and document analyses (principles-focused evaluation) to evaluate the progress in accomplishing these goals midway through the QB@CC program. The QB@CC network provides a model for developing and sustaining an interdisciplinary community that benefits participants and generates valuable resources for the broader community. Similar network-building programs may wish to adopt some of the effective aspects of the QB@CC network model to meet their objectives.

摘要

掌握定量技能对于学生在生命科学领域取得成功变得越来越重要,但很少有课程能充分融入定量技能。社区学院的定量生物学(QB@CC)旨在通过建立一个社区学院教师的基层联盟来解决这一需求,该联盟将:1)参与跨学科合作,提高参与者在生命科学、数学和统计学领域的信心;2)生成和发布一系列专注于定量技能的开放教育资源(OER);3)广泛传播这些 OER 和教学实践,从而扩大网络。目前,QB@CC 已经在其第三个年头招募了 70 名教师加入该网络,并创建了 20 个模块。有兴趣的生物学和数学教育者可以在高中、两年制和四年制学院访问这些模块。在这里,我们使用调查回应、焦点小组访谈和文件分析(基于原则的评估)来评估 QB@CC 计划中途完成这些目标的进展情况。QB@CC 网络为开发和维持一个有益于参与者并为更广泛的社区生成有价值资源的跨学科社区提供了一个模型。类似的网络建设项目可能希望采用 QB@CC 网络模型的一些有效方面来实现其目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验