Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States.
The Graduate Center of CUNY, New York, New York 10016, United States.
J Am Chem Soc. 2023 Mar 15;145(10):5786-5794. doi: 10.1021/jacs.2c12775. Epub 2023 Mar 2.
The integration of heterogeneous electrocatalysis and molecular catalysis is a promising approach to designing new catalysts for the oxygen evolution reaction (OER) and other processes. We recently showed that the electrostatic potential drop across the double layer contributes to the driving force for electron transfer between a dissolved reactant and a molecular catalyst immobilized directly on the electrode surface. Here, we report high current densities and low onset potentials for water oxidation attained using a metal-free voltage-assisted molecular catalyst (TEMPO). Scanning electrochemical microscopy (SECM) was used to analyze the products and determine faradic efficiencies for the generation of HO and O. The same catalyst was employed for efficient oxidations of butanol, ethanol, glycerol, and HO. DFT calculations show that the applied voltage alters the electrostatic potential drop between TEMPO and the reactant as well as chemical bonding between them, thereby increasing the reaction rate. These results suggest a new route for designing next-generation hybrid molecular/electrocatalysts for OER and alcohol oxidations.
异相电催化和分子催化的整合是设计用于氧气析出反应(OER)和其他过程的新型催化剂的一种很有前途的方法。我们最近表明,双电层中的静电势降有助于溶解反应物与直接固定在电极表面上的分子催化剂之间的电子转移的驱动力。在此,我们报告了使用无金属电压辅助分子催化剂(TEMPO)获得的高电流密度和低起始电位的水氧化。扫描电化学显微镜(SECM)用于分析产物并确定 HO 和 O 的生成的法拉第效率。相同的催化剂用于有效的丁醇、乙醇、甘油和 HO 的氧化。DFT 计算表明,施加的电压改变了 TEMPO 和反应物之间的静电势降以及它们之间的化学键合,从而提高了反应速率。这些结果表明了设计用于 OER 和醇氧化的下一代混合分子/电催化剂的新途径。