Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
Angew Chem Int Ed Engl. 2021 Apr 19;60(17):9699-9705. doi: 10.1002/anie.202016064. Epub 2021 Mar 17.
Efficient noble-metal free electrocatalyst for oxygen evolution reaction (OER) is critical for large-scale hydrogen production via water splitting. Inspired by Nature's oxygen evolution cluster in photosystem II and the highly efficient artificial OER catalyst of NiFe layered double hydroxide (LDH), we designed an electrostatic 2D-2D assembly route and successfully synthesized a 2D LDH(+)-Birnessite(-) hybrid. The as-constructed LDH(+)-Birnessite(-) hybrid catalyst showed advanced catalytic activity and excellent stability towards OER under a close to industrial hydrogen production condition (85 °C and 6 M KOH) for more than 20 h at the current densities larger than 100 mA cm . Experimentally, we found that besides the enlarged interlayer distance, the flexible interlayer NiFe LDH(+) also modulates the electronic structure of layered MnO , and creates an electric field between NiFe LDH(+) and Birnessite(-), wherein OER occurs with a greatly decreased overpotential. DFT calculations confirmed the interlayer LDH modulations of the OER process, attributable to the distinct electronic distributions and environments. Upshifting the Fe-3d orbitals in LDH promotes electron transfer from the layered MnO to LDH, significantly boosting up the OER performance. This work opens a new way to fabricate highly efficient OER catalyst for industrial water oxidation.
高效的无贵金属电催化剂对于通过水分解大规模生产氢气至关重要。受自然界光合作用系统 II 中氧气进化簇和高效人工 OER 催化剂 NiFe 层状双氢氧化物(LDH)的启发,我们设计了一种静电 2D-2D 组装路线,并成功合成了 2D LDH(+)-Birnessite(-) 杂化物。所构建的 LDH(+)-Birnessite(-) 杂化物催化剂在接近工业制氢条件(85°C 和 6M KOH)下,在电流密度大于 100 mA·cm 的情况下,对 OER 表现出先进的催化活性和优异的稳定性,持续超过 20 小时。实验发现,除了增大层间距离外,柔性层间 NiFe LDH(+)还可以调节层状 MnO 的电子结构,并在 NiFe LDH(+)和 Birnessite(-)之间产生电场,其中 OER 的过电位大大降低。DFT 计算证实了层间 LDH 对 OER 过程的调制作用,这归因于明显不同的电子分布和环境。在 LDH 中提升 Fe-3d 轨道,促进了从层状 MnO 到 LDH 的电子转移,显著提高了 OER 性能。这项工作为工业水氧化提供了一种制造高效 OER 催化剂的新方法。