Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10009, USA.
Weill Cornell Medicine, New York, NY, USA.
Arthritis Res Ther. 2023 Mar 2;25(1):31. doi: 10.1186/s13075-023-03008-8.
We sought to identify features that distinguish osteoarthritis (OA) and rheumatoid arthritis (RA) hematoxylin and eosin (H&E)-stained synovial tissue samples.
We compared fourteen pathologist-scored histology features and computer vision-quantified cell density (147 OA and 60 RA patients) in H&E-stained synovial tissue samples from total knee replacement (TKR) explants. A random forest model was trained using disease state (OA vs RA) as a classifier and histology features and/or computer vision-quantified cell density as inputs.
Synovium from OA patients had increased mast cells and fibrosis (p < 0.001), while synovium from RA patients exhibited increased lymphocytic inflammation, lining hyperplasia, neutrophils, detritus, plasma cells, binucleate plasma cells, sub-lining giant cells, fibrin (all p < 0.001), Russell bodies (p = 0.019), and synovial lining giant cells (p = 0.003). Fourteen pathologist-scored features allowed for discrimination between OA and RA, producing a micro-averaged area under the receiver operating curve (micro-AUC) of 0.85±0.06. This discriminatory ability was comparable to that of computer vision cell density alone (micro-AUC = 0.87±0.04). Combining the pathologist scores with the cell density metric improved the discriminatory power of the model (micro-AUC = 0.92±0.06). The optimal cell density threshold to distinguish OA from RA synovium was 3400 cells/mm, which yielded a sensitivity of 0.82 and specificity of 0.82.
H&E-stained images of TKR explant synovium can be correctly classified as OA or RA in 82% of samples. Cell density greater than 3400 cells/mm and the presence of mast cells and fibrosis are the most important features for making this distinction.
我们旨在确定区分骨关节炎(OA)和类风湿关节炎(RA)苏木精和伊红(H&E)染色滑膜组织样本的特征。
我们比较了 14 种病理学家评分的组织学特征和计算机视觉量化的细胞密度(147 例 OA 和 60 例 RA 患者),这些特征来自全膝关节置换(TKR)标本的 H&E 染色滑膜组织。使用疾病状态(OA 与 RA)作为分类器,组织学特征和/或计算机视觉量化的细胞密度作为输入,训练随机森林模型。
OA 患者的滑膜中肥大细胞和纤维化增加(p<0.001),而 RA 患者的滑膜中淋巴细胞炎症、衬里增生、中性粒细胞、碎屑、浆细胞、双核浆细胞、下衬里巨细胞、纤维蛋白(均 p<0.001)、罗素体(p=0.019)和滑膜衬里巨细胞(p=0.003)增加。14 种病理学家评分的特征可区分 OA 和 RA,产生的微平均接收者操作曲线下面积(micro-AUC)为 0.85±0.06。这种区分能力与单独使用计算机视觉细胞密度相当(micro-AUC=0.87±0.04)。将病理学家评分与细胞密度指标相结合,提高了模型的区分能力(micro-AUC=0.92±0.06)。区分 OA 和 RA 滑膜的最佳细胞密度阈值为 3400 个细胞/mm,其敏感性为 0.82,特异性为 0.82。
TKR 标本滑膜的 H&E 染色图像可以在 82%的样本中正确分类为 OA 或 RA。细胞密度大于 3400 个细胞/mm 以及肥大细胞和纤维化的存在是做出这种区分的最重要特征。