Shida Kohei, Fukata Kazuhiro, Fujino Yuji, Inoue Masahide, Inoue Mamiko, Sekine Daisuke, Miki Hiroshi, Sato Hirofumi, Kobayashi Yohei, Hasegawa Koki, Amimoto Kazu, Makita Shigeru, Takahashi Hidetoshi
Department of Rehabilitation Center, Saitama Medical University International Medical Center: 1397-1 Yamane, Hidaka-shi, Saitama 350-1298, Japan.
Department of Physical Therapy, Faculty of Human Health Sciences, Tokyo Metropolitan University, Japan.
J Phys Ther Sci. 2023 Mar;35(3):217-222. doi: 10.1589/jpts.35.217. Epub 2023 Mar 1.
[Purpose] Walking ability should be predicted as early as possible in acute stroke patients. The purpose is to construct a prediction model for independent walking from bedside assessments using classification and regression tree analysis. [Participants and Methods] We conducted a multicenter case-control study with 240 stroke patients. Survey items included age, gender, injured hemisphere, the National Institute of Health Stroke Scale, the Brunnstrom Recovery Stage for lower extremities, and "turn over from a supine position" from the Ability for Basic Movement Scale. The National Institute of Health Stroke Scale items, such as language, extinction, and inattention, were grouped under higher brain dysfunction. We used the Functional Ambulation Categories to classify patients into independent (four or more the Functional Ambulation Categories; n=120) and dependent (three or fewer the Functional Ambulation Categories; n=120) walking groups. A classification and regression tree analysis was used to create a model to predict independent walking. [Results] The Brunnstrom Recovery Stage for lower extremities, "turn over from a supine position" from the Ability for Basic Movement Scale, and higher brain dysfunction were the splitting criteria for classifying patients into four categories: Category 1 (0%), severe motor paresis; Category 2 (10.0%), mild motor paresis and could not turn over; Category 3 (52.5%), with mild motor paresis, could turn over, and had higher brain dysfunction; and Category 4 (82.5%), with mild motor paresis, could turn over, and no higher brain dysfunction. [Conclusion] We constructed a useful prediction model for independent walking based on the three criteria.
[目的] 应尽早对急性中风患者的行走能力进行预测。目的是使用分类和回归树分析,从床边评估构建独立行走的预测模型。[参与者和方法] 我们对240名中风患者进行了多中心病例对照研究。调查项目包括年龄、性别、受损半球、美国国立卫生研究院卒中量表、下肢Brunnstrom恢复阶段以及基本运动能力量表中的“从仰卧位翻身能力”。美国国立卫生研究院卒中量表项目,如语言、消退和注意力不集中,被归类为高级脑功能障碍。我们使用功能性步行分类将患者分为独立行走组(功能性步行分类为四级或更高;n = 120)和依赖行走组(功能性步行分类为三级或更低;n = 120)。使用分类和回归树分析创建一个预测独立行走的模型。[结果] 下肢Brunnstrom恢复阶段、基本运动能力量表中的“从仰卧位翻身能力”以及高级脑功能障碍是将患者分为四类的划分标准:第1类(0%),严重运动性轻瘫;第2类(10.0%),轻度运动性轻瘫且无法翻身;第3类(52.5%),轻度运动性轻瘫,可翻身,且有高级脑功能障碍;第4类(82.5%),轻度运动性轻瘫,可翻身,且无高级脑功能障碍。[结论] 根据这三个标准,我们构建了一个有用的独立行走预测模型。