Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, T6G 2G2, Alberta, Canada.
Department of Food Science, University of Copenhagen, Rolighedsvej 26, Copenhagen, DK-1958, Denmark.
Anal Chim Acta. 2023 Apr 8;1249:340909. doi: 10.1016/j.aca.2023.340909. Epub 2023 Feb 1.
Analysis of GC×GC-TOFMS data for large numbers of poorly-resolved peaks, and for large numbers of samples remains an enduring problem that hinders the widespread application of the technique. For multiple samples, GC×GC-TOFMS data for specific chromatographic regions manifests as a 4 order tensor of I mass spectral acquisitions, J mass channels, K modulations, and L samples. Chromatographic drift is common along both the first-dimension (modulations), and along the second-dimension (mass spectral acquisitions), while drift along the mass channel is for all practical purposes nonexistent. A number of solutions to handling GC×GC-TOFMS data have been proposed: these involve reshaping the data to make it amenable to either 2 order decomposition techniques based on Multivariate Curve Resolution (MCR), or 3 order decomposition techniques such as Parallel Factor Analysis 2 (PARAFAC2). PARAFAC2 has been utilised to model chromatographic drift along one mode, which has enabled its use for robust decomposition of multiple GC-MS experiments. Although extensible, it is not straightforward to implement a PARAFAC2 model that accounts for drift along multiple modes. In this submission, we demonstrate a new approach and a general theory for modelling data with drift along multiple modes, for applications in multidimensional chromatography with multivariate detection. The proposed model captures over 99.9% of variance for a synthetic data set, presenting an extreme example of peak drift and co-elution across two modes of separation.
对于大量分辨率较差的峰和大量样本的 GC×GC-TOFMS 数据的分析仍然是一个持久存在的问题,阻碍了该技术的广泛应用。对于多个样本,特定色谱区域的 GC×GC-TOFMS 数据表现为 I 质谱采集、J 质量通道、K 调制和 L 样本的 4 阶张量。在一维(调制)和二维(质谱采集)上都存在常见的色谱漂移,而在质量通道上的漂移实际上是不存在的。已经提出了许多处理 GC×GC-TOFMS 数据的解决方案:这些方法涉及将数据重塑为可用于基于多变量曲线分辨率(MCR)的 2 阶分解技术,或用于平行因子分析 2(PARAFAC2)等 3 阶分解技术。PARAFAC2 已被用于对一种模式下的色谱漂移进行建模,从而使其能够用于稳健地分解多个 GC-MS 实验。尽管可扩展,但实现一个能够解释多个模式下漂移的 PARAFAC2 模型并不容易。在本提交中,我们展示了一种新的方法和一般理论,用于对具有多个模式漂移的数据进行建模,适用于具有多变量检测的多维色谱。所提出的模型可以捕获合成数据集 99.9%以上的方差,呈现了两个分离模式下峰漂移和共洗脱的极端示例。