Suppr超能文献

基于任务的大脑状态动力学差异及其与认知能力的关系。

Task-based differences in brain state dynamics and their relation to cognitive ability.

机构信息

NeuroModulation Lab, Department of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK; Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.

UK Dementia Research Institute, Care Research and Technology Centre at Imperial College, London and the University of Surrey, Guildford, UK; Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.

出版信息

Neuroimage. 2023 May 1;271:119945. doi: 10.1016/j.neuroimage.2023.119945. Epub 2023 Mar 2.

Abstract

Transient patterns of interregional connectivity form and dissipate in response to varying cognitive demands. Yet, it is not clear how different cognitive demands influence brain state dynamics, and whether these dynamics relate to general cognitive ability. Here, using functional magnetic resonance imaging (fMRI) data, we characterised shared, recurrent, global brain states in 187 participants across the working memory, emotion, language, and relation tasks from the Human Connectome Project. Brain states were determined using Leading Eigenvector Dynamics Analysis (LEiDA). In addition to the LEiDA-based metrics of brain state lifetimes and probabilities, we also computed information-theoretic measures of Block Decomposition Method of complexity, Lempel-Ziv complexity and transition entropy. Information theoretic metrics are notable in their ability to compute relationships amongst sequences of states over time, compared to lifetime and probability, which capture the behaviour of each state in isolation. We then related task-based brain state metrics to fluid intelligence. We observed that brain states exhibited stable topology across a range of numbers of clusters (K = 2:15). Most metrics of brain state dynamics, including state lifetime, probability, and all information theoretic metrics, reliably differed between tasks. However, relationships between state dynamic metrics and cognitive abilities varied according to the task, the metric, and the value of K, indicating that there are contextual relationships between task-dependant state dynamics and trait cognitive ability. This study provides evidence that the brain reconfigures across time in response to cognitive demands, and that there are contextual, rather than generalisable, relationships amongst task, state dynamics, and cognitive ability.

摘要

瞬时区域间连接模式会根据不断变化的认知需求而形成和消散。然而,目前尚不清楚不同的认知需求如何影响大脑状态动力学,以及这些动力学是否与一般认知能力有关。在这里,我们使用功能磁共振成像 (fMRI) 数据,在 187 名参与者中,对工作记忆、情绪、语言和关系任务中的 HCP 数据进行了分析。使用主导特征向量动力学分析 (LEiDA) 来确定大脑状态。除了基于 LEiDA 的大脑状态寿命和概率指标外,我们还计算了块分解复杂度的信息论度量、Lempel-Ziv 复杂度和转移熵。与寿命和概率相比,信息论度量的突出之处在于能够计算随时间推移的状态序列之间的关系,而寿命和概率则分别捕获每个状态的行为。然后,我们将基于任务的大脑状态指标与流体智力相关联。我们观察到,在一系列聚类数 (K=2:15) 下,大脑状态表现出稳定的拓扑结构。大脑状态动力学的大多数指标,包括状态寿命、概率和所有信息论指标,在任务之间可靠地存在差异。然而,状态动态指标与认知能力之间的关系因任务、指标和 K 值而异,这表明任务相关的状态动态与特质认知能力之间存在上下文关系。这项研究提供了证据表明,大脑会根据认知需求在时间上重新配置,并且任务、状态动态和认知能力之间存在上下文关系,而不是可推广的关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验