Suppr超能文献

通过表观遗传重塑储存的机械记忆会降低细胞的治疗潜力。

Mechanical memory stored through epigenetic remodeling reduces cell therapeutic potential.

机构信息

Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado.

Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado.

出版信息

Biophys J. 2023 Apr 18;122(8):1428-1444. doi: 10.1016/j.bpj.2023.03.004. Epub 2023 Mar 4.

Abstract

Understanding how cells remember previous mechanical environments to influence their fate, or mechanical memory, informs the design of biomaterials and therapies in medicine. Current regeneration therapies, such as cartilage regeneration procedures, require 2D cell expansion processes to achieve large cell populations critical for the repair of damaged tissues. However, the limit of mechanical priming for cartilage regeneration procedures before inducing long-term mechanical memory following expansion processes is unknown, and mechanisms defining how physical environments influence the therapeutic potential of cells remain poorly understood. Here, we identify a threshold to mechanical priming separating reversible and irreversible effects of mechanical memory. After 16 population doublings in 2D culture, expression levels of tissue-identifying genes in primary cartilage cells (chondrocytes) are not recovered when transferred to 3D hydrogels, while expression levels of these genes were recovered for cells only expanded for eight population doublings. Additionally, we show that the loss and recovery of the chondrocyte phenotype correlates with a change in chromatin architecture, as shown by structural remodeling of the trimethylation of H3K9. Efforts to disrupt the chromatin architecture by suppressing or increasing levels of H3K9me3 reveal that only with increased levels of H3K9me3 did the chromatin architecture of the native chondrocyte phenotype partially return, along with increased levels of chondrogenic gene expression. These results further support the connection between the chondrocyte phenotype and chromatin architecture, and also reveal the therapeutic potential of inhibitors of epigenetic modifiers as disruptors of mechanical memory when large numbers of phenotypically suitable cells are required for regeneration procedures.

摘要

了解细胞如何记住先前的机械环境以影响其命运(即机械记忆),可以为医学中的生物材料和治疗方法的设计提供信息。当前的再生疗法,如软骨再生程序,需要 2D 细胞扩展过程来实现对于修复受损组织至关重要的大量细胞群体。然而,在扩展过程后诱导长期机械记忆之前,软骨再生程序的机械预加载的限制是未知的,并且定义物理环境如何影响细胞治疗潜力的机制仍知之甚少。在这里,我们确定了一个阈值,以分离机械记忆的可逆和不可逆效应。在 2D 培养中进行 16 次群体倍增后,当将初级软骨细胞(软骨细胞)转移到 3D 水凝胶中时,组织识别基因的表达水平不会恢复,而仅在进行 8 次群体倍增的细胞中恢复了这些基因的表达水平。此外,我们还表明,软骨细胞表型的丧失和恢复与染色质结构的变化相关,如 H3K9 三甲基化的结构重塑所示。通过抑制或增加 H3K9me3 的水平来破坏染色质结构的努力表明,只有增加 H3K9me3 的水平,才能使天然软骨细胞表型的染色质结构部分恢复,同时增加软骨形成基因的表达水平。这些结果进一步支持了软骨细胞表型与染色质结构之间的联系,并揭示了表观遗传修饰抑制剂作为机械记忆破坏者的治疗潜力,当需要大量表型合适的细胞用于再生程序时。

相似文献

1
Mechanical memory stored through epigenetic remodeling reduces cell therapeutic potential.
Biophys J. 2023 Apr 18;122(8):1428-1444. doi: 10.1016/j.bpj.2023.03.004. Epub 2023 Mar 4.
2
Epigenetic Priming Enhances Chondrogenic Potential of Expanded Chondrocytes.
Tissue Eng Part A. 2024 May;30(9-10):415-425. doi: 10.1089/ten.TEA.2023.0170. Epub 2024 Apr 17.
3
Perspective in Achieving Stratified Articular Cartilage Repair Using Zonal Chondrocytes.
Tissue Eng Part B Rev. 2023 Jun;29(3):310-330. doi: 10.1089/ten.TEB.2022.0142. Epub 2023 Jan 24.
4
Functional tissue-engineered microtissue derived from cartilage extracellular matrix for articular cartilage regeneration.
Acta Biomater. 2018 Sep 1;77:127-141. doi: 10.1016/j.actbio.2018.07.031. Epub 2018 Jul 18.
6
Functional cartilage repair capacity of de-differentiated, chondrocyte- and mesenchymal stem cell-laden hydrogels in vitro.
Osteoarthritis Cartilage. 2014 Aug;22(8):1148-57. doi: 10.1016/j.joca.2014.05.019. Epub 2014 Jun 2.
7
Rapid Cartilage Regeneration of Spheroids Composed of Human Nasal Septum-Derived Chondrocyte in Rat Osteochondral Defect Model.
Tissue Eng Regen Med. 2020 Feb;17(1):81-90. doi: 10.1007/s13770-019-00231-w. Epub 2020 Jan 25.
8
Priming chondrocytes during expansion alters cell behavior and improves matrix production in 3D culture.
Osteoarthritis Cartilage. 2024 May;32(5):548-560. doi: 10.1016/j.joca.2023.12.006. Epub 2023 Dec 30.
9
Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction.
Biochim Biophys Acta. 2014 Aug;1840(8):2414-40. doi: 10.1016/j.bbagen.2014.02.030. Epub 2014 Mar 6.
10

引用本文的文献

4
Cellular mechanical memory: a potential tool for mesenchymal stem cell-based therapy.
Stem Cell Res Ther. 2025 Mar 31;16(1):159. doi: 10.1186/s13287-025-04249-x.
5
Mechanical Forces, Nucleus, Chromosomes, and Chromatin.
Biomolecules. 2025 Mar 1;15(3):354. doi: 10.3390/biom15030354.
6
Feeling the force from within - new tools and insights into nuclear mechanotransduction.
J Cell Sci. 2025 Mar 1;138(5). doi: 10.1242/jcs.263615. Epub 2025 Mar 10.
7
Mechanical signatures in cancer metastasis.
NPJ Biol Phys Mech. 2025;2(1):3. doi: 10.1038/s44341-024-00007-x. Epub 2025 Feb 4.
8
A human stem cell-derived model reveals pathologic extracellular matrix remodeling in diabetic podocyte injury.
Matrix Biol Plus. 2024 Nov 2;24:100164. doi: 10.1016/j.mbplus.2024.100164. eCollection 2024 Dec.
9
GelMA hydrogel dual photo-crosslinking to dynamically modulate ECM stiffness.
Front Bioeng Biotechnol. 2024 Jun 20;12:1363525. doi: 10.3389/fbioe.2024.1363525. eCollection 2024.
10
Insights into the mechanobiology of cancer metastasis via microfluidic technologies.
APL Bioeng. 2024 Jun 3;8(2):021506. doi: 10.1063/5.0195389. eCollection 2024 Jun.

本文引用的文献

1
Nuclear deformation guides chromatin reorganization in cardiac development and disease.
Nat Biomed Eng. 2021 Dec;5(12):1500-1516. doi: 10.1038/s41551-021-00823-9. Epub 2021 Dec 2.
2
Recellularization and Integration of Dense Extracellular Matrix by Percolation of Tissue Microparticles.
Adv Funct Mater. 2021 Aug 26;31(35). doi: 10.1002/adfm.202103355. Epub 2021 Jun 23.
3
Dedifferentiation alters chondrocyte nuclear mechanics during in vitro culture and expansion.
Biophys J. 2022 Jan 4;121(1):131-141. doi: 10.1016/j.bpj.2021.11.018. Epub 2021 Nov 17.
5
Functions of the SNAI family in chondrocyte-to-osteocyte development.
Ann N Y Acad Sci. 2021 Nov;1503(1):5-22. doi: 10.1111/nyas.14668. Epub 2021 Aug 17.
6
KDM4 Orchestrates Epigenomic Remodeling of Senescent Cells and Potentiates the Senescence-Associated Secretory Phenotype.
Nat Aging. 2021 May;1(5):454-472. doi: 10.1038/s43587-021-00063-1. Epub 2021 May 13.
7
Nuclear mechanosensing drives chromatin remodelling in persistently activated fibroblasts.
Nat Biomed Eng. 2021 Dec;5(12):1485-1499. doi: 10.1038/s41551-021-00709-w. Epub 2021 Apr 19.
8
Epigenetic Mechanisms Mediating Cell State Transitions in Chondrocytes.
J Bone Miner Res. 2021 May;36(5):968-985. doi: 10.1002/jbmr.4263. Epub 2021 Mar 2.
9
Pathogenic LMNA variants disrupt cardiac lamina-chromatin interactions and de-repress alternative fate genes.
Cell Stem Cell. 2021 May 6;28(5):938-954.e9. doi: 10.1016/j.stem.2020.12.016. Epub 2021 Feb 1.
10
Hydrostatic pressure prevents chondrocyte differentiation through heterochromatin remodeling.
J Cell Sci. 2021 Jan 27;134(2):jcs247643. doi: 10.1242/jcs.247643.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验