Suppr超能文献

用于医学中以人类为中心应用的贝叶斯逻辑神经网络。

Bayesian logical neural networks for human-centered applications in medicine.

作者信息

Diaz Ochoa Juan G, Maier Lukas, Csiszar Orsolya

机构信息

Data Science & Machine Learning Division, PERMEDIQ GmbH, Wang, Germany.

Faculty of Electrical Engineering and Computer Science, Hochschule Aalen, Aalen, Germany.

出版信息

Front Bioinform. 2023 Feb 15;3:1082941. doi: 10.3389/fbinf.2023.1082941. eCollection 2023.

Abstract

Medicine is characterized by its inherent uncertainty, i.e., the difficulty of identifying and obtaining exact outcomes from available data. Electronic Health Records aim to improve the exactitude of health management, for instance using automatic data recording techniques or the integration of structured as well as unstructured data. However, this data is far from perfect and is usually noisy, implying that epistemic uncertainty is almost always present in all biomedical research fields. This impairs the correct use and interpretation of the data not only by health professionals but also in modeling techniques and AI models incorporated in professional recommender systems. In this work, we report a novel modeling methodology combining models, defined on Logic Neural Networks which replace conventional deep-learning methods with logical gates embedded in neural networks, and Bayesian Networks to model data uncertainties. This means, we do not account for the variability of the input data, but we train single models according to the data and deliver different Logic-Operator neural network models that could adapt to the input data, for instance, medical procedures (Therapy Keys depending on the inherent uncertainty of the observed data. Thus, our model does not only aim to assist physicians in their decisions by providing accurate recommendations; it is above all a user-centered solution that informs the physician when a given recommendation, in this case, a therapy, is uncertain and must be carefully evaluated. As a result, the physician must be a professional who does not solely rely on automatic recommendations. This novel methodology was tested on a database for patients with heart insufficiency and can be the basis for future applications of recommender systems in medicine.

摘要

医学的特点是其固有的不确定性,即从现有数据中识别和获得确切结果的困难。电子健康记录旨在提高健康管理的准确性,例如使用自动数据记录技术或整合结构化和非结构化数据。然而,这些数据远非完美,通常存在噪声,这意味着认知不确定性几乎在所有生物医学研究领域中都始终存在。这不仅妨碍了医疗专业人员正确使用和解释数据,也影响了专业推荐系统中所采用的建模技术和人工智能模型。在这项工作中,我们报告了一种新颖的建模方法,该方法结合了基于逻辑神经网络定义的模型(用嵌入神经网络的逻辑门取代传统深度学习方法)和贝叶斯网络来对数据不确定性进行建模。这意味着,我们不考虑输入数据的变异性,而是根据数据训练单个模型,并提供不同的逻辑算子神经网络模型,这些模型可以适应输入数据,例如医疗程序(治疗关键取决于观察数据的固有不确定性)。因此,我们的模型不仅旨在通过提供准确的建议来协助医生做出决策;最重要的是,它是以用户为中心的解决方案,当给定的建议(在这种情况下是一种治疗方法)不确定且必须仔细评估时,会告知医生。结果,医生必须是不单纯依赖自动推荐的专业人员。这种新颖的方法在心力衰竭患者数据库上进行了测试,可为推荐系统在医学领域的未来应用奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4535/9975151/d07264bec31c/fbinf-03-1082941-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验