Suppr超能文献

自动化偏差:频率、影响中介和缓解因素的系统评价。

Automation bias: a systematic review of frequency, effect mediators, and mitigators.

机构信息

Centre for Health Informatics, City University, London, UK.

出版信息

J Am Med Inform Assoc. 2012 Jan-Feb;19(1):121-7. doi: 10.1136/amiajnl-2011-000089. Epub 2011 Jun 16.

Abstract

Automation bias (AB)--the tendency to over-rely on automation--has been studied in various academic fields. Clinical decision support systems (CDSS) aim to benefit the clinical decision-making process. Although most research shows overall improved performance with use, there is often a failure to recognize the new errors that CDSS can introduce. With a focus on healthcare, a systematic review of the literature from a variety of research fields has been carried out, assessing the frequency and severity of AB, the effect mediators, and interventions potentially mitigating this effect. This is discussed alongside automation-induced complacency, or insufficient monitoring of automation output. A mix of subject specific and freetext terms around the themes of automation, human-automation interaction, and task performance and error were used to search article databases. Of 13 821 retrieved papers, 74 met the inclusion criteria. User factors such as cognitive style, decision support systems (DSS), and task specific experience mediated AB, as did attitudinal driving factors such as trust and confidence. Environmental mediators included workload, task complexity, and time constraint, which pressurized cognitive resources. Mitigators of AB included implementation factors such as training and emphasizing user accountability, and DSS design factors such as the position of advice on the screen, updated confidence levels attached to DSS output, and the provision of information versus recommendation. By uncovering the mechanisms by which AB operates, this review aims to help optimize the clinical decision-making process for CDSS developers and healthcare practitioners.

摘要

自动化偏差(AB)——过度依赖自动化的倾向——已在各个学术领域进行了研究。临床决策支持系统(CDSS)旨在有益于临床决策过程。尽管大多数研究表明使用后整体性能有所提高,但往往未能认识到 CDSS 可能引入的新错误。本文重点关注医疗保健,对来自各种研究领域的文献进行了系统综述,评估了 AB 的频率和严重程度、影响调解因素以及潜在减轻这种影响的干预措施。这与自动化引起的自满或对自动化输出的监测不足一起进行了讨论。围绕自动化、人机交互以及任务绩效和错误等主题,使用了主题特定和自由文本术语来搜索文章数据库。在 13821 篇检索到的论文中,有 74 篇符合纳入标准。用户因素,如认知风格、决策支持系统(DSS)和特定任务经验,调节了 AB,而信任和信心等态度驱动因素也是如此。环境调解因素包括工作量、任务复杂性和时间限制,这些因素给认知资源带来了压力。AB 的缓解因素包括实施因素,如培训和强调用户问责制,以及 DSS 设计因素,如建议在屏幕上的位置、与 DSS 输出相关的更新置信度水平以及提供信息与建议。通过揭示 AB 运作的机制,本综述旨在帮助 CDSS 开发人员和医疗保健从业者优化临床决策过程。

相似文献

7
Shared decision-making interventions for people with mental health conditions.心理健康问题患者的共同决策干预措施。
Cochrane Database Syst Rev. 2022 Nov 11;11(11):CD007297. doi: 10.1002/14651858.CD007297.pub3.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验