Brown L K, Van Schalkwyk C, De Villiers A K, Marx F M
South African DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Cape Town, South Africa.
South African DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Cape Town, South Africa; Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
S Afr Med J. 2023 Mar 2;113(3):125-134. doi: 10.7196/SAMJ.2023.v113i3.16812.
Substantial additional efforts are needed to prevent, find and successfully treat tuberculosis (TB) in South Africa (SA). In thepast decade, an increasing body of mathematical modelling research has investigated the population-level impact of TB prevention and careinterventions. To date, this evidence has not been assessed in the SA context.
To systematically review mathematical modelling studies that estimated the impact of interventions towards the World HealthOrganization's End TB Strategy targets for TB incidence, TB deaths and catastrophic costs due to TB in SA.
We searched the PubMed, Web of Science and Scopus databases for studies that used transmission-dynamic models of TB in SAand reported on at least one of the End TB Strategy targets at population level. We described study populations, type of interventions andtheir target groups, and estimates of impact and other key findings. For studies of country-level interventions, we estimated average annualpercentage declines (AAPDs) in TB incidence and mortality attributable to the intervention.
We identified 29 studies that met our inclusion criteria, of which 7 modelled TB preventive interventions (vaccination,antiretroviral treatment (ART) for HIV, TB preventive treatment (TPT)), 12 considered interventions along the care cascade for TB(screening/case finding, reducing initial loss to follow-up, diagnostic and treatment interventions), and 10 modelled combinationsof preventive and care-cascade interventions. Only one study focused on reducing catastrophic costs due to TB. The highest impactof a single intervention was estimated in studies of TB vaccination, TPT among people living with HIV, and scale-up of ART. Forpreventive interventions, AAPDs for TB incidence varied between 0.06% and 7.07%, and for care-cascade interventions between 0.05%and 3.27%.
We describe a body of mathematical modelling research with a focus on TB prevention and care in SA. We found higherestimates of impact reported in studies of preventive interventions, highlighting the need to invest in TB prevention in SA. However, studyheterogeneity and inconsistent baseline scenarios limit the ability to compare impact estimates between studies. Combinations, rather thansingle interventions, are likely needed to reach the End TB Strategy targets in SA.
在南非,需要付出更多努力来预防、发现并成功治疗结核病(TB)。在过去十年中,越来越多的数学建模研究探讨了结核病预防和护理干预措施对人群层面的影响。迄今为止,尚未在南非背景下对这一证据进行评估。
系统回顾数学建模研究,这些研究估计了干预措施对世界卫生组织终止结核病战略中南非结核病发病率、结核病死亡以及结核病所致灾难性费用目标的影响。
我们在PubMed、科学网和Scopus数据库中搜索了在南非使用结核病传播动力学模型并报告了至少一项人群层面终止结核病战略目标的研究。我们描述了研究人群、干预措施类型及其目标群体,以及影响估计和其他主要发现。对于国家层面干预措施的研究,我们估计了干预措施导致的结核病发病率和死亡率的年均下降百分比(AAPD)。
我们确定了29项符合纳入标准的研究,其中7项对结核病预防干预措施(疫苗接种、针对艾滋病毒的抗逆转录病毒治疗(ART)、结核病预防性治疗(TPT))进行了建模,12项考虑了结核病护理级联中的干预措施(筛查/病例发现、减少初始失访、诊断和治疗干预措施),10项对预防和护理级联干预措施的组合进行了建模。只有一项研究关注降低结核病所致灾难性费用。在结核病疫苗接种、艾滋病毒感染者中的TPT以及扩大ART规模的研究中,估计单一干预措施的影响最大。对于预防干预措施,结核病发病率的AAPD在0.06%至7.07%之间,护理级联干预措施的AAPD在0.05%至3.27%之间。
我们描述了一系列以南非结核病预防和护理为重点的数学建模研究。我们发现预防干预措施研究中报告的影响估计值更高,这突出了在南非投资结核病预防的必要性。然而,研究的异质性和不一致的基线情景限制了比较不同研究间影响估计值的能力。在南非,可能需要综合多种干预措施而非单一干预措施才能实现终止结核病战略目标。