Suppr超能文献

PS-SAM:倾向得分整合自适应混合模型,用于动态高效地借鉴历史数据中的信息。

PS-SAM: propensity-score-integrated self-adapting mixture prior to dynamically and efficiently borrow information from historical data.

作者信息

Zhao Yuansong, Yang Peng, Laird Glen, Chen Josh, Yuan Ying

机构信息

Department of Biostatistics and Data Science, University of Texas Health Science Center at Houston, Houston, TX, USA.

Department of Statistics, Rice University, Houston, TX, USA.

出版信息

J Biopharm Stat. 2025 Apr 17:1-16. doi: 10.1080/10543406.2025.2489284.

Abstract

There has been growing interest in incorporating historical data to improve the efficiency of randomized controlled trials (RCTs) or reduce their required sample size. A key challenge is that the patient characteristics of the historical data may differ from those of the current RCT. To address this issue, a well-known approach is to employ propensity score matching or inverse probability weighting to adjust for baseline heterogeneity, enabling the incorporation of historical data into the inference of RCT. However, this approach is subject to bias when there are unmeasured confounders. We address this issue by incorporating a self-adapting mixture (SAM) prior with propensity score matching and inverse probability weighting to enable additional adaptation for information borrowing in the presence of unmeasured confounders. The resulting propensity score-integrated SAM (PS-SAM) priors are robust in the sense that if there are no unmeasured confounders, they result in an unbiased causal estimate of the treatment effect; and if there are unmeasured confounders, they provide a notably less biased treatment effect with better-controlled type I error. Simulation studies demonstrate that the PS-SAM prior exhibits desirable operating characteristics enabling adaptive information borrowing. The proposed methodology is freely available as the R package "SAMprior".

摘要

将历史数据纳入以提高随机对照试验(RCT)的效率或减少其所需样本量的兴趣与日俱增。一个关键挑战是历史数据的患者特征可能与当前RCT的特征不同。为解决此问题,一种广为人知的方法是采用倾向得分匹配或逆概率加权来调整基线异质性,从而能够将历史数据纳入RCT的推断中。然而,当存在未测量的混杂因素时,这种方法容易产生偏差。我们通过将自适应混合(SAM)先验与倾向得分匹配和逆概率加权相结合来解决此问题,以便在存在未测量的混杂因素时能够对信息借用进行额外的自适应调整。由此产生的倾向得分整合SAM(PS-SAM)先验具有稳健性,即如果不存在未测量的混杂因素,它们会得出无偏的治疗效果因果估计;如果存在未测量的混杂因素,它们会提供偏差明显更小且I型错误得到更好控制的治疗效果。模拟研究表明,PS-SAM先验具有理想的操作特性,能够实现自适应信息借用。所提出的方法作为R包“SAMprior”免费提供。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验