Davoli Elisa, Ferreira Rita, Fonseca Irene, Iglesias José A
Institute of Analysis and Scientific Computing, TU Wien, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria.
CEMSE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia.
J Math Imaging Vis. 2024;66(6):1070-1108. doi: 10.1007/s10851-024-01213-x. Epub 2024 Oct 23.
Due to their ability to handle discontinuous images while having a well-understood behavior, regularizations with total variation (TV) and total generalized variation (TGV) are some of the best-known methods in image denoising. However, like other variational models including a fidelity term, they crucially depend on the choice of their tuning parameters. A remedy is to choose these automatically through multilevel approaches, for example by optimizing performance on noisy/clean image pairs. In this work, we consider such methods with space-dependent parameters which are piecewise constant on dyadic grids, with the grid itself being part of the minimization. We prove existence of minimizers for fixed discontinuous parameters under mild assumptions on the data, which lead to existence of finite optimal partitions. We further establish that these assumptions are equivalent to the commonly used box constraints on the parameters. On the numerical side, we consider a simple subdivision scheme for optimal partitions built on top of any other bilevel optimization method for scalar parameters, and demonstrate its improved performance on some representative test images when compared with constant optimized parameters.
由于能够处理不连续图像且行为易于理解,具有总变分(TV)和总广义变分(TGV)的正则化方法是图像去噪中一些最著名的方法。然而,与其他包含保真项的变分模型一样,它们关键取决于其调谐参数的选择。一种补救方法是通过多级方法自动选择这些参数,例如通过优化有噪声/无噪声图像对的性能。在这项工作中,我们考虑具有空间相关参数的此类方法,这些参数在二进网格上是分段常数,网格本身是最小化的一部分。我们证明了在对数据的温和假设下,对于固定的不连续参数存在极小值,这导致存在有限的最优划分。我们进一步证明这些假设等同于对参数常用的盒约束。在数值方面,我们考虑一种基于任何其他标量参数双水平优化方法构建的用于最优划分的简单细分方案,并与恒定优化参数相比,展示了其在一些代表性测试图像上的改进性能。