Suppr超能文献

腕部指纹识别:从腕部佩戴的加速度计数据中识别用户重新识别风险

WristPrint: Characterizing User Re-identification Risks from Wrist-worn Accelerometry Data.

作者信息

Saleheen Nazir, Ullah Md Azim, Chakraborty Supriyo, Ones Deniz S, Srivastava Mani, Kumar Santosh

机构信息

University of Memphis.

IBM T. J. Watson Research Center.

出版信息

Conf Comput Commun Secur. 2021 Nov;2021:2807-2823. doi: 10.1145/3460120.3484799. Epub 2021 Nov 13.

Abstract

Public release of wrist-worn motion sensor data is growing. They enable and accelerate research in developing new algorithms to passively track daily activities, resulting in improved health and wellness utilities of smartwatches and activity trackers. But, when combined with sensitive attribute inference attack and linkage attack via re-identification of the same user in multiple datasets, undisclosed sensitive attributes can be revealed to unintended organizations with potentially adverse consequences for unsuspecting data contributing users. To guide both users and data collecting researchers, we characterize the re-identification risks inherent in motion sensor data collected from wrist-worn devices in users' natural environment. For this purpose, we use an open-set formulation, train a deep learning architecture with a new loss function, and apply our model to a new data set consisting of 10 weeks of daily sensor wearing by 353 users. We find that re-identification risk increases with an increase in the activity intensity. On average, such risk is 96% for a user when sharing a full day of sensor data.

摘要

手腕佩戴式运动传感器数据的公开发布正在增加。它们有助于并加速开发新算法以被动跟踪日常活动的研究,从而提高智能手表和活动追踪器的健康与保健功能。但是,当与敏感属性推断攻击以及通过在多个数据集中重新识别同一用户的链接攻击相结合时,未公开的敏感属性可能会被泄露给意想不到的组织,这可能会对毫无戒心的数据贡献用户产生不利后果。为了指导用户和数据收集研究人员,我们描述了在用户自然环境中从手腕佩戴设备收集的运动传感器数据中固有的重新识别风险。为此,我们使用开放集公式,训练具有新损失函数的深度学习架构,并将我们的模型应用于由353名用户10周的每日传感器佩戴数据组成的新数据集。我们发现重新识别风险随着活动强度的增加而增加。平均而言,当用户共享一整天的传感器数据时,这种风险为96%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d818/9988376/f7530bc95bf1/nihms-1839082-f0020.jpg

相似文献

5
StresSense: Real-Time detection of stress-displaying behaviors.StresSense:实时检测压力表现行为。
Int J Med Inform. 2024 May;185:105401. doi: 10.1016/j.ijmedinf.2024.105401. Epub 2024 Mar 7.

本文引用的文献

1
mTeeth: Identifying Brushing Teeth Surfaces Using Wrist-Worn Inertial Sensors.mTeeth:使用腕戴式惯性传感器识别刷牙的牙齿表面
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2021 Jun;5(2). doi: 10.1145/3463494. Epub 2021 Jun 24.
3
Recent Advances in Open Set Recognition: A Survey.开放集识别的最新进展:一项综述。
IEEE Trans Pattern Anal Mach Intell. 2021 Oct;43(10):3614-3631. doi: 10.1109/TPAMI.2020.2981604. Epub 2021 Sep 2.
6
Center of Excellence for Mobile Sensor Data-to-Knowledge (MD2K).移动传感器数据到知识卓越中心(MD2K)。
IEEE Pervasive Comput. 2017 Apr-Jun;16(2):18-22. doi: 10.1109/MPRV.2017.29. Epub 2017 Apr 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验