Akther Sayma, Saleheen Nazir, Saha Mithun, Shetty Vivek, Kumar Santosh
University of Memphis.
University of California, Los Angeles.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2021 Jun;5(2). doi: 10.1145/3463494. Epub 2021 Jun 24.
Ensuring that all the teeth surfaces are adequately covered during daily brushing can reduce the risk of several oral diseases. In this paper, we propose the model to detect teeth surfaces being brushed with a manual toothbrush in the natural free-living environment using wrist-worn inertial sensors. To unambiguously label sensor data corresponding to different surfaces and capture all transitions that last only milliseconds, we present a lightweight method to detect the micro-event of that cleanly demarcates transitions among brushing surfaces. Using features extracted from brushing strokes, we propose a Bayesian Ensemble method that leverages the natural hierarchy among teeth surfaces and patterns of transition among them. For training and testing, we enrich a publicly-available wrist-worn inertial sensor dataset collected from the natural environment with time-synchronized precise labels of brushing surface timings and moments of transition. We annotate 10,230 instances of brushing on different surfaces from 114 episodes and evaluate the impact of wide between-person and within-person between-episode variability on machine learning model's performance for brushing surface detection.
确保在日常刷牙过程中所有牙齿表面都得到充分覆盖,可以降低多种口腔疾病的风险。在本文中,我们提出了一种模型,用于在自然生活环境中使用腕戴式惯性传感器检测使用手动牙刷刷牙时的牙齿表面。为了明确标记与不同表面对应的传感器数据,并捕捉仅持续几毫秒的所有过渡,我们提出了一种轻量级方法来检测微事件,该方法能够清晰地划分刷牙表面之间的过渡。利用从刷牙动作中提取的特征,我们提出了一种贝叶斯集成方法,该方法利用了牙齿表面之间的自然层次结构以及它们之间的过渡模式。为了进行训练和测试,我们用刷牙表面时间和过渡时刻的时间同步精确标签丰富了一个从自然环境中收集的公开可用的腕戴式惯性传感器数据集。我们从114个片段中注释了10230个在不同表面上刷牙的实例,并评估了个体间和个体内片段间的广泛变异性对刷牙表面检测机器学习模型性能的影响。