Suppr超能文献

基于 MRI 图像的果蝇优化密集连接卷积神经网络阿尔茨海默病预测

Alzheimer's Disease Prediction Using Fly-Optimized Densely Connected Convolution Neural Networks Based on MRI Images.

机构信息

M. Baskar, Associate Professor, Department of Computing Technologies, School of Computing, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu, India,

出版信息

J Prev Alzheimers Dis. 2024;11(4):1106-1121. doi: 10.14283/jpad.2024.66.

Abstract

Alzheimer's is a degenerative brain cell disease that affects around 5.8 million people globally. The progressive neurodegenerative disease known as Alzheimer's Disease (AD), affects the frontal cortex, the part of the brain in charge of memory, language, and cognition. As a result, researchers are utilizing a variety of machine-learning techniques to create an automated method for AD detection. The massive data collected during ROI and biomarker identification takes longer to handle using current methods. This study uses metaheuristic-tuned deep learning to detect the AD-affected region. The research utilizes advanced deep learning and image processing techniques to enhance early and accurate diagnosis of Alzheimer's disease, potentially enhancing patient outcomes and prompt therapy. The capacity of deep neural networks to extract complex patterns from magnetic resonance imaging (MRI) scans makes them indispensable in the diagnosis of AD since they allow the detection of minor aberrations and complex alterations in brain structure and composition. An adaptive histogram approach processes the collected photographs, and a weighted median filter is used in place of the noisy pixels. The next step is to identify the issue region using a deep convolution network-based clustering segmentation process. A correlated information theory approach is used to extract various textural and statistical features from the separated regions. Lastly, the selected features are probed by the fly-optimized densely linked convolution neural networks. The method surpasses state-of-the-art techniques in sensitivity (15.52%), specificity (15.62%), accuracy (9.01%), error rate (11.29%), and F-measure (10.52%) for recognizing AD-impacted regions in MRI scans using the Kaggle dataset.

摘要

阿尔茨海默病是一种影响全球约 580 万人的退行性脑细胞疾病。这种被称为阿尔茨海默病(AD)的进行性神经退行性疾病影响大脑的额叶,负责记忆、语言和认知。因此,研究人员正在利用各种机器学习技术来创建一种用于 AD 检测的自动化方法。在 ROI 和生物标志物识别过程中收集的大量数据,使用当前方法需要更长的时间来处理。本研究使用元启发式调谐的深度学习来检测受 AD 影响的区域。该研究利用先进的深度学习和图像处理技术,提高了阿尔茨海默病的早期和准确诊断,有可能改善患者的预后和及时治疗。深度神经网络从磁共振成像(MRI)扫描中提取复杂模式的能力,使它们在 AD 的诊断中不可或缺,因为它们可以检测到大脑结构和组成中的微小异常和复杂改变。自适应直方图方法处理收集的照片,并且使用加权中位数滤波器代替噪声像素。下一步是使用基于深度卷积网络的聚类分割过程来识别问题区域。相关信息理论方法用于从分离的区域中提取各种纹理和统计特征。最后,使用 fly-optimized densely linked convolution neural networks 探测选定的特征。该方法在使用 Kaggle 数据集识别 MRI 扫描中受 AD 影响的区域方面,在敏感性(15.52%)、特异性(15.62%)、准确性(9.01%)、错误率(11.29%)和 F 度量(10.52%)方面均优于最先进的技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验