Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA.
Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA.
Mol Microbiol. 2023 May;119(5):551-559. doi: 10.1111/mmi.15052. Epub 2023 Mar 13.
Lysine acetylation is one of the most abundant post-translational modifications in nature, affecting many key biological pathways in both prokaryotes and eukaryotes. It has not been long since technological advances led to understanding of the roles of acetylation in biological processes. Most of those studies were based on proteomic analyses, which have identified thousands of acetylation sites in a wide range of proteins. However, the specific role of individual acetylation event remains largely unclear, mostly due to the existence of multiple acetylation and dynamic changes of acetylation levels. To solve these problems, the genetic code expansion technique has been applied in protein acetylation studies, facilitating the incorporation of acetyllysine into a specific lysine position to generate a site-specifically acetylated protein. By this method, the effects of acetylation at a specific lysine residue can be characterized with minimal interferences. Here, we summarized the development of the genetic code expansion technique for lysine acetylation and recent studies on lysine acetylation of citrate acid cycle enzymes in bacteria by this approach, providing a practical application of the genetic code expansion technique in protein acetylation studies.
赖氨酸乙酰化是自然界中最丰富的翻译后修饰之一,影响原核生物和真核生物中的许多关键生物途径。直到最近,技术的进步才使人们了解到乙酰化在生物过程中的作用。这些研究大多基于蛋白质组学分析,已经在广泛的蛋白质中鉴定了数千个乙酰化位点。然而,单个乙酰化事件的具体作用在很大程度上仍不清楚,主要是由于存在多种乙酰化和乙酰化水平的动态变化。为了解决这些问题,遗传密码扩展技术已应用于蛋白质乙酰化研究,促进了乙酰赖氨酸掺入到特定赖氨酸位置,从而生成具有特异性乙酰化的蛋白质。通过这种方法,可以在最小干扰的情况下对特定赖氨酸残基上的乙酰化作用进行特征描述。在这里,我们总结了遗传密码扩展技术在赖氨酸乙酰化方面的发展,以及最近通过该方法研究细菌柠檬酸循环酶的赖氨酸乙酰化,为遗传密码扩展技术在蛋白质乙酰化研究中的实际应用提供了参考。