Suppr超能文献

消除酶催化区室化以提高紫杉二烯产量 。 你提供的原文似乎不太完整,后面应该还有具体的内容。

Elimination of enzymes catalysis compartmentalization enhancing taxadiene production in .

作者信息

Zhang Chenglong, Chen Wang, Dong Tianyu, Wang Ying, Yao Mingdong, Xiao Wenhai, Li Bingzhi

机构信息

Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.

Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen, China.

出版信息

Front Bioeng Biotechnol. 2023 Feb 20;11:1141272. doi: 10.3389/fbioe.2023.1141272. eCollection 2023.

Abstract

Taxadiene is an important precursor in taxol biosynthesis pathway, but its biosynthesis in eukaryotic cell factories is limited, which seriously hinders the biosynthesis of taxol. In this study, it is found that there was the catalysis compartmentalization between two key exogenous enzymes of geranylgeranyl pyrophosphate synthase and taxadiene synthase (TS) for taxadiene synthesis progress, due to their different subcellular localization. Firstly, the enzyme-catalysis compartmentalization was overcome by means of the intracellular relocation strategies of taxadiene synthase, including N-terminal truncation of taxadiene synthase and enzyme fusion of GGPPS-TS. With the help of two strategies for enzyme relocation, the taxadiene yield was increased by 21% and 54% respectively, among them the GGPPS-TS fusion enzyme is more effective. Further, the expression of GGPPS-TS fusion enzyme was improved the multi-copy plasmid, resulting that the taxadiene titer was increased by 38% to 21.8 mg/L at shake-flask level. Finally, the maximum taxadiene titer of 184.2 mg/L was achieved by optimization of the fed-batch fermentation conditions in 3 L bioreactor, which is the highest reported titer of taxadiene biosynthesis accomplished in eukaryotic microbes. This study provides a successful example for improving biosynthesis of complex natural products by solving the critical problem of multistep enzymes catalysis compartmentalization.

摘要

紫杉二烯是紫杉醇生物合成途径中的重要前体,但它在真核细胞工厂中的生物合成受到限制,这严重阻碍了紫杉醇的生物合成。在本研究中,发现由于香叶基香叶基焦磷酸合酶和紫杉二烯合酶(TS)这两种用于紫杉二烯合成的关键外源酶的亚细胞定位不同,它们在催化过程中存在区室化现象。首先,通过紫杉二烯合酶的细胞内重新定位策略克服了酶催化区室化,包括紫杉二烯合酶的N端截短和GGPPS-TS的酶融合。借助这两种酶重新定位策略,紫杉二烯产量分别提高了21%和54%,其中GGPPS-TS融合酶更有效。进一步地,通过多拷贝质粒提高了GGPPS-TS融合酶的表达,使得在摇瓶水平上紫杉二烯滴度提高了38%,达到21.8 mg/L。最后,通过优化3 L生物反应器中的补料分批发酵条件,实现了184.2 mg/L的最大紫杉二烯滴度,这是在真核微生物中报道的最高的紫杉二烯生物合成滴度。本研究通过解决多步酶催化区室化这一关键问题,为提高复杂天然产物的生物合成提供了一个成功范例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa3b/9986319/f4695c2258a0/fbioe-11-1141272-g001.jpg

相似文献

1
Elimination of enzymes catalysis compartmentalization enhancing taxadiene production in .
Front Bioeng Biotechnol. 2023 Feb 20;11:1141272. doi: 10.3389/fbioe.2023.1141272. eCollection 2023.
2
Improving solubility and copy number of taxadiene synthase to enhance the titer of taxadiene in .
Synth Syst Biotechnol. 2023 Apr 26;8(2):331-338. doi: 10.1016/j.synbio.2023.04.002. eCollection 2023 Jun.
3
Metabolic Engineering of Toward Taxadiene Biosynthesis as the First Committed Step for Taxol Production.
Front Microbiol. 2019 Feb 20;10:218. doi: 10.3389/fmicb.2019.00218. eCollection 2019.
5
Enhanced production of taxadiene in Saccharomyces cerevisiae.
Microb Cell Fact. 2020 Nov 2;19(1):200. doi: 10.1186/s12934-020-01458-2.
6
Developing a Yeast Platform Strain for an Enhanced Taxadiene Biosynthesis by CRISPR/Cas9.
Metabolites. 2021 Mar 3;11(3):147. doi: 10.3390/metabo11030147.
7
Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production.
Metab Eng. 2008 May-Jul;10(3-4):201-6. doi: 10.1016/j.ymben.2008.03.001. Epub 2008 Mar 26.
8
Metabolic engineering of Saccharomyces cerevisiae for enhanced taxadiene production.
Microb Cell Fact. 2024 Sep 6;23(1):241. doi: 10.1186/s12934-024-02512-z.
9
Importation of taxadiene synthase into chloroplast improves taxadiene production in tobacco.
Planta. 2021 Apr 17;253(5):107. doi: 10.1007/s00425-021-03626-z.

引用本文的文献

本文引用的文献

1
Origin and early evolution of the plant terpene synthase family.
Proc Natl Acad Sci U S A. 2022 Apr 12;119(15):e2100361119. doi: 10.1073/pnas.2100361119. Epub 2022 Apr 8.
2
Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in Yarrowia lipolytica.
Metab Eng. 2021 Nov;68:152-161. doi: 10.1016/j.ymben.2021.10.004. Epub 2021 Oct 9.
3
Metabolic engineering of for terpenoids production: advances and perspectives.
Crit Rev Biotechnol. 2022 Jun;42(4):618-633. doi: 10.1080/07388551.2021.1947183. Epub 2021 Jul 29.
4
Engineering yeast subcellular compartments for increased production of the lipophilic natural products ginsenosides.
Metab Eng. 2021 Sep;67:104-111. doi: 10.1016/j.ymben.2021.06.002. Epub 2021 Jun 18.
5
Recent progress and new perspectives for diterpenoid biosynthesis in medicinal plants.
Med Res Rev. 2021 Nov;41(6):2971-2997. doi: 10.1002/med.21816. Epub 2021 May 2.
6
A "push-pull-restrain" strategy to improve citronellol production in Saccharomyces cerevisiae.
Metab Eng. 2021 Jul;66:51-59. doi: 10.1016/j.ymben.2021.03.019. Epub 2021 Apr 19.
7
Posttranslational modifications in proteins: resources, tools and prediction methods.
Database (Oxford). 2021 Apr 7;2021. doi: 10.1093/database/baab012.
8
Compartmentalized biosynthesis of fungal natural products.
Curr Opin Biotechnol. 2021 Jun;69:128-135. doi: 10.1016/j.copbio.2020.12.006. Epub 2021 Jan 13.
9
Metabolic engineering and synthetic biology for isoprenoid production in Escherichia coli and Saccharomyces cerevisiae.
Appl Microbiol Biotechnol. 2021 Jan;105(2):457-475. doi: 10.1007/s00253-020-11040-w. Epub 2021 Jan 4.
10
Natural Products in Cancer Therapy: Past, Present and Future.
Nat Prod Bioprospect. 2021 Feb;11(1):5-13. doi: 10.1007/s13659-020-00293-7. Epub 2021 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验