Suppr超能文献

仿生梯度布利甘结构提高陶瓷-聚合物复合材料的抗冲击性能。

Biomimetic Gradient Bouligand Structure Enhances Impact Resistance of Ceramic-Polymer Composites.

机构信息

Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.

CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China.

出版信息

Adv Mater. 2023 May;35(21):e2211175. doi: 10.1002/adma.202211175. Epub 2023 Apr 6.

Abstract

Biological materials relied on multiple synergistic structural design elements typically exhibit excellent comprehensive mechanical properties. Hierarchical incorporation of different biostructural elements into a single artificial material is a promising approach to enhance mechanical properties, but remains challenging. Herein, a biomimetic structural design strategy is proposed by coupling gradient structure with twisted plywood Bouligand structure, attempting to improve the impact resistance of ceramic-polymer composites. Via robocasting and sintering, kaolin ceramic filaments reinforced by coaxially aligned alumina nanoplatelets are arranged into Bouligand structure with a gradual transition in filament spacing along the thickness direction. After the following polymer infiltration, biomimetic ceramic-polymer composites with a gradient Bouligand (GB) structure are eventually fabricated. Experimental investigations reveal that the incorporation of gradient structure into Bouligand structure improves both the peak force and total energy absorption of the obtained ceramic-polymer composites. Computational modeling further suggests the substantial improvement in impact resistance by adopting GB structure, and clarifies the underlying deformation behavior of the biomimetic GB structured composites under impact. This biomimetic design strategy may provide valuable insights for developing lightweight and impact-resistant structural materials in the future.

摘要

生物材料依赖于多个协同的结构设计元素,通常表现出优异的综合力学性能。将不同的生物结构元素分层纳入单一的人工材料是一种提高力学性能的有前途的方法,但仍然具有挑战性。在此,通过将梯度结构与扭曲胶合板 Bouligand 结构相结合,提出了一种仿生结构设计策略,试图提高陶瓷-聚合物复合材料的抗冲击性。通过机器人打印和烧结,高岭土陶瓷纤维被同轴排列的氧化铝纳米片增强,在厚度方向上沿纤维间距呈梯度排列成 Bouligand 结构。在随后的聚合物渗透后,最终制备出具有梯度 Bouligand(GB)结构的仿生陶瓷-聚合物复合材料。实验研究表明,将梯度结构引入 Bouligand 结构可以提高所获得的陶瓷-聚合物复合材料的峰值力和总能量吸收。计算模型进一步表明,采用 GB 结构可以显著提高抗冲击性,并阐明了在冲击下仿生 GB 结构复合材料的基本变形行为。这种仿生设计策略可能为未来开发轻质和抗冲击的结构材料提供有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验