Suppr超能文献

具有布利冈结构的聚噻吩包裹壳聚糖纳米纤维用于制备电化学宏观膜

Polythiophene-wrapped Chitosan Nanofibrils with a Bouligand Structure toward Electrochemical Macroscopic Membranes.

作者信息

Dang Nhan Thi Thanh, Le Thang Quoc, Duc Cuong Nguyen, Linh Nguyen Le My, Le Lam Son, Tran Tien Dong, Nguyen Hai Phong

机构信息

Department of Chemistry, Hue University of Education, Hue University, 34 Le Loi, Hue 530000, Vietnam.

Department of Chemistry, Hue University of Sciences, Hue University, 77 Nguyen Hue, Hue 530000, Vietnam.

出版信息

ACS Omega. 2024 Mar 15;9(12):13680-13691. doi: 10.1021/acsomega.3c07894. eCollection 2024 Mar 26.

Abstract

Exploring structural biomimicry is a great opportunity to replicate hierarchical frameworks inspired by nature in advanced functional materials for boosting new applications. In this work, we present the biomimetic integration of polythiophene into chitosan nanofibrils in a twisted Bouligand structure to afford free-standing macroscopic composite membranes with electrochemical functionality. By considering the integrity of the Bouligand structure in crab shells, we can produce large, free-standing chitosan nanofibril membranes with iridescent colors and flexible toughness. These unique structured features lead the chitosan membranes to host functional additives to mimic hierarchically layered composites. We used the iridescent chitosan nanofibrils as a photonic platform to investigate the host-guest combination between thiophene and chitosan through oxidative polymerization to fabricate homogeneous polythiophene-wrapped chitosan composites. This biomimetic incorporation fully retains the twisted Bouligand organization of nanofibrils in the polymerized assemblies, thus giving rise to free-standing macroscopic electrochemical membranes. Our further experiments are the modification of the biomimetic polythiophene-wrapped chitosan composites on a glassy carbon electrode to design a three-electrode system for simultaneous electrochemical detection of uric acid, xanthine, hypoxanthine, and caffeine at trace concentrations.

摘要

探索结构仿生学是一个绝佳的机会,可在先进功能材料中复制受自然启发的分级框架,以推动新应用的发展。在这项工作中,我们展示了将聚噻吩以扭曲的布利冈结构仿生整合到壳聚糖纳米纤维中,以制备具有电化学功能的独立宏观复合膜。通过考虑蟹壳中布利冈结构的完整性,我们能够制备出具有彩虹色和柔韧性的大型独立壳聚糖纳米纤维膜。这些独特的结构特征使壳聚糖膜能够容纳功能性添加剂,以模拟分层复合材料。我们将彩虹色壳聚糖纳米纤维用作光子平台,通过氧化聚合研究噻吩与壳聚糖之间的主客体组合,以制备均匀的聚噻吩包裹的壳聚糖复合材料。这种仿生掺入完全保留了纳米纤维在聚合组件中的扭曲布利冈结构,从而产生了独立的宏观电化学膜。我们进一步的实验是在玻碳电极上对仿生聚噻吩包裹的壳聚糖复合材料进行修饰,以设计一个三电极系统,用于同时电化学检测痕量浓度的尿酸、黄嘌呤、次黄嘌呤和咖啡因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55cc/10976385/d7604effc5e6/ao3c07894_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验