文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Polythiophene-wrapped Chitosan Nanofibrils with a Bouligand Structure toward Electrochemical Macroscopic Membranes.

作者信息

Dang Nhan Thi Thanh, Le Thang Quoc, Duc Cuong Nguyen, Linh Nguyen Le My, Le Lam Son, Tran Tien Dong, Nguyen Hai Phong

机构信息

Department of Chemistry, Hue University of Education, Hue University, 34 Le Loi, Hue 530000, Vietnam.

Department of Chemistry, Hue University of Sciences, Hue University, 77 Nguyen Hue, Hue 530000, Vietnam.

出版信息

ACS Omega. 2024 Mar 15;9(12):13680-13691. doi: 10.1021/acsomega.3c07894. eCollection 2024 Mar 26.


DOI:10.1021/acsomega.3c07894
PMID:38559940
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10976385/
Abstract

Exploring structural biomimicry is a great opportunity to replicate hierarchical frameworks inspired by nature in advanced functional materials for boosting new applications. In this work, we present the biomimetic integration of polythiophene into chitosan nanofibrils in a twisted Bouligand structure to afford free-standing macroscopic composite membranes with electrochemical functionality. By considering the integrity of the Bouligand structure in crab shells, we can produce large, free-standing chitosan nanofibril membranes with iridescent colors and flexible toughness. These unique structured features lead the chitosan membranes to host functional additives to mimic hierarchically layered composites. We used the iridescent chitosan nanofibrils as a photonic platform to investigate the host-guest combination between thiophene and chitosan through oxidative polymerization to fabricate homogeneous polythiophene-wrapped chitosan composites. This biomimetic incorporation fully retains the twisted Bouligand organization of nanofibrils in the polymerized assemblies, thus giving rise to free-standing macroscopic electrochemical membranes. Our further experiments are the modification of the biomimetic polythiophene-wrapped chitosan composites on a glassy carbon electrode to design a three-electrode system for simultaneous electrochemical detection of uric acid, xanthine, hypoxanthine, and caffeine at trace concentrations.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55cc/10976385/ab95e7261090/ao3c07894_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55cc/10976385/d7604effc5e6/ao3c07894_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55cc/10976385/16c6674a7ea0/ao3c07894_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55cc/10976385/fe9538bffaf7/ao3c07894_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55cc/10976385/c9a04ebf1c87/ao3c07894_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55cc/10976385/08061ed0aa3a/ao3c07894_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55cc/10976385/f91f327cdd84/ao3c07894_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55cc/10976385/f390cc99ac43/ao3c07894_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55cc/10976385/ed435fba07d3/ao3c07894_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55cc/10976385/ab95e7261090/ao3c07894_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55cc/10976385/d7604effc5e6/ao3c07894_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55cc/10976385/16c6674a7ea0/ao3c07894_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55cc/10976385/fe9538bffaf7/ao3c07894_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55cc/10976385/c9a04ebf1c87/ao3c07894_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55cc/10976385/08061ed0aa3a/ao3c07894_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55cc/10976385/f91f327cdd84/ao3c07894_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55cc/10976385/f390cc99ac43/ao3c07894_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55cc/10976385/ed435fba07d3/ao3c07894_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55cc/10976385/ab95e7261090/ao3c07894_0009.jpg

相似文献

[1]
Polythiophene-wrapped Chitosan Nanofibrils with a Bouligand Structure toward Electrochemical Macroscopic Membranes.

ACS Omega. 2024-3-15

[2]
Biomimetic Gradient Bouligand Structure Enhances Impact Resistance of Ceramic-Polymer Composites.

Adv Mater. 2023-5

[3]
Transparent and Soft Crack-Resistant Bouligand Elastomers Inspired by Fish Scales.

Macromol Rapid Commun. 2024-2

[4]
A multiscale fracture model to reveal the toughening mechanism in bioinspired Bouligand structures.

Acta Biomater. 2024-3-1

[5]
Analysis and simulation of fracture behavior in naturally occurring Bouligand structures.

Acta Biomater. 2021-11

[6]
Biomimetic Mechanically Robust Chiroptical Hydrogel Enabled by Hierarchical Bouligand Structure Engineering.

ACS Nano. 2024-6-4

[7]
Natural silk nanofibrils as reinforcements for the preparation of chitosan-based bionanocomposites.

Carbohydr Polym. 2021-2-1

[8]
Bioinspired Bouligand cellulose nanocrystal composites: a review of mechanical properties.

Philos Trans A Math Phys Eng Sci. 2018-2-13

[9]
Understanding the Self-Assembly of Cellulose Nanocrystals-Toward Chiral Photonic Materials.

Adv Mater. 2020-2-3

[10]
Hierarchical and reconfigurable interfibrous interface of bioinspired Bouligand structure enabled by moderate orderliness.

Sci Adv. 2024-4-5

本文引用的文献

[1]
Organic Mixed Ion-Electron Conductivity in Polymer Hybrid Systems.

ACS Omega. 2022-9-8

[2]
Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications.

RSC Adv. 2021-2-3

[3]
Chitosan composite scaffolds for articular cartilage defect repair: a review.

RSC Adv. 2018-1-19

[4]
Hierarchical self-assembly into chiral nanostructures.

Chem Sci. 2021-11-9

[5]
Development of Biopolymer and Conducting Polymer-Based Optical Sensors for Heavy Metal Ion Detection.

Molecules. 2020-5-30

[6]
Engineering strategies for chitin nanofibers.

J Mater Chem B. 2017-4-14

[7]
Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices.

J Mater Chem B. 2015-11-14

[8]
Insulating and semiconducting polymeric free-standing nanomembranes with biomedical applications.

J Mater Chem B. 2015-8-7

[9]
Strong adhesion of wet conducting polymers on diverse substrates.

Sci Adv. 2020-3-20

[10]
Biodegradable Flexible Substrate Based on Chitosan/PVP Blend Polymer for Disposable Electronics Device Applications.

J Phys Chem B. 2020-1-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索