Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan.
Synchrotron Radiation Research Center, Nagoya University, Furo, Chikusa, Nagoya 466-8603, Japan.
J Synchrotron Radiat. 2023 Mar 1;30(Pt 2):368-378. doi: 10.1107/S1600577522011833. Epub 2023 Jan 20.
X-ray fluorescence holography (XFH) is a powerful atomic resolution technique capable of directly imaging the local atomic structure around atoms of a target element within a material. Although it is theoretically possible to use XFH to study the local structures of metal clusters in large protein crystals, the experiment has proven difficult to perform, especially on radiation-sensitive proteins. Here, the development of serial X-ray fluorescence holography to allow the direct recording of hologram patterns before the onset of radiation damage is reported. By combining a 2D hybrid detector and the serial data collection used in serial protein crystallography, the X-ray fluorescence hologram can be directly recorded in a fraction of the measurement time needed for conventional XFH measurements. This approach was demonstrated by obtaining the Mn Kα hologram pattern from the protein crystal Photosystem II without any X-ray-induced reduction of the Mn clusters. Furthermore, a method to interpret the fluorescence patterns as real-space projections of the atoms surrounding the Mn emitters has been developed, where the surrounding atoms produce large dark dips along the emitter-scatterer bond directions. This new technique paves the way for future experiments on protein crystals that aim to clarify the local atomic structures of their functional metal clusters, and for other related XFH experiments such as valence-selective XFH or time-resolved XFH.
X 射线荧光全息术(XFH)是一种强大的原子分辨率技术,能够直接成像材料中目标元素原子周围的局部原子结构。虽然从理论上讲,可以使用 XFH 研究大蛋白晶体中金属团簇的局部结构,但实验证明这很难实现,特别是对于对辐射敏感的蛋白质。在这里,报告了开发连续 X 射线荧光全息术以允许在辐射损伤发生之前直接记录全息图模式。通过结合二维混合探测器和连续蛋白质晶体学中使用的连续数据采集,可以在传统 XFH 测量所需的测量时间的一小部分内直接记录 X 射线荧光全息图。通过从蛋白质晶体 Photosystem II 中获得 Mn Kα 全息图图案而无需对 Mn 团簇进行任何 X 射线诱导还原来证明该方法。此外,还开发了一种将荧光图案解释为围绕 Mn 发射体的原子的实空间投影的方法,其中周围的原子在发射体-散射体键方向上产生大的暗凹陷。这项新技术为未来旨在阐明其功能金属团簇的局部原子结构的蛋白质晶体实验以及其他相关的 XFH 实验(例如价态选择 XFH 或时间分辨 XFH)铺平了道路。