Suppr超能文献

用于骨科植入应用的搅拌摩擦加工新型生物活性镁-磷锌矿复合材料。

Novel Bioactive Magnesium-Hopeite composite by friction stir processing for orthopedic implant applications.

作者信息

Kumar Kundan, Das Ashish, Prasad Shashi Bhushan

机构信息

Department of Production and Industrial Engineering, National Institute of Technology, Jamshedpur, Jharkhand, India.

出版信息

Proc Inst Mech Eng H. 2023 Apr;237(4):502-516. doi: 10.1177/09544119231158837. Epub 2023 Mar 9.

Abstract

Magnesium (Mg) shows excellent potential for orthopedic implant applications owing to its equivalent mechanical properties compared to cortical bone and its biocompatibility. However, the rapid degradation rate of magnesium and its alloys in the physiological environment results in losing their mechanical integrity before complete bone healing. In light of this, friction stir processing (FSP), a solid-state process, is used to fabricate Hopeite (Zn(PO).4HO) reinforced novel magnesium composite. As a result of the novel composite fabricated by FSP, grain refinement of the matrix phase occurs significantly. The samples were immersed in simulated body fluid (SBF) for in-vitro bioactivity and biodegradability tests. The corrosion behavior of pure Mg, FSP Mg, and FSP Mg-Hopeite composite samples was compared using electrochemical and immersion tests in SBF. It found that Mg-Hopeite composite has better corrosion resistance than FSP Mg and pure Mg. Because of grain refinement and the presence of secondary phase Hopeite in the composite, the mechanical properties and corrosion resistance improved. The bioactivity test was performed in the SBF environment, and a rapid apatite layer was formed on the surface of Mg-Hopeite composite samples during the test. Osteoblast-like MG63 cells were exposed to samples, and the MTT assay confirmed the non-toxicity of the FSP Mg-Hopeite composite. The wettability of the Mg-Hopeite composite was improved than pure Mg. The present research findings showed that the novel Mg-Hopeite composite fabricated by FSP is a promising candidate for orthopedic implant applications, unreported in the literature.

摘要

镁(Mg)由于其与皮质骨相当的力学性能及其生物相容性,在骨科植入应用中显示出优异的潜力。然而,镁及其合金在生理环境中的快速降解速率导致它们在骨完全愈合之前就失去了机械完整性。鉴于此,搅拌摩擦加工(FSP)这种固态加工工艺被用于制备磷锌矿(Zn₃(PO₄)₂·4H₂O)增强的新型镁基复合材料。通过FSP制备的新型复合材料,基体相的晶粒显著细化。将样品浸入模拟体液(SBF)中进行体外生物活性和生物降解性测试。通过在SBF中的电化学和浸泡测试比较了纯镁、FSP镁和FSP镁 - 磷锌矿复合材料样品的腐蚀行为。结果发现,镁 - 磷锌矿复合材料比FSP镁和纯镁具有更好的耐腐蚀性。由于复合材料中的晶粒细化和第二相磷锌矿的存在,其力学性能和耐腐蚀性得到了改善。在SBF环境中进行了生物活性测试,在测试过程中,镁 - 磷锌矿复合材料样品表面迅速形成了磷灰石层。将成骨样MG63细胞暴露于样品中,MTT法证实了FSP镁 - 磷锌矿复合材料无毒性。镁 - 磷锌矿复合材料的润湿性比纯镁有所提高。本研究结果表明,通过FSP制备的新型镁 - 磷锌矿复合材料是骨科植入应用中有前景的候选材料,这在文献中尚未报道。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验