Suppr超能文献

搅拌摩擦增材制造 AZ31B 镁合金-羟基磷灰石复合材料的体外生物腐蚀性。

In-vitro bio-corrosion behavior of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites.

机构信息

Laboratory for Laser Aided Additive and Subtractive Manufacturing, Department of Materials Science and Engineering, University of North Texas, 1150 Union Circle 305310, Denton, TX 76203-5017, USA.

Department of Materials and Optoelectronic Science, National Sun Yat-sen University, No.70, Lianhai Rd., Gushan Dist., Kaohsiung City 80424, Taiwan ROC.

出版信息

Mater Sci Eng C Mater Biol Appl. 2020 Apr;109:110632. doi: 10.1016/j.msec.2020.110632. Epub 2020 Jan 3.

Abstract

Magnesium and its alloys have been considered for consumable bio-implant applications due to their similar mechanical properties to the natural bone and biodegradability. Nevertheless, uncontrollable corrosion rate and limited bioactivity of Mg based materials in biological environment restrain their application. In light of this, objective of the present study was to explore addition of hydroxyapatite (HA, Ca(PO)OH), a ceramic similar to bone mineral, into AZ31B Mg alloy and its effects on bio-corrosion behavior. Friction stir processing based additive manufacturing route was employed for producing AZ31B Mg-HA composites. Various HA contents (5, 10, and 20 wt%) were incorporated into Mg matrix. The microstructural observation revealed that the size of α-Mg grains reduced significantly after friction stir process. HA incorporation took place at micro/nanoscale in α-Mg matrix under the thermo-mechanical forces exerted by friction stir process. The corrosion behavior of friction stir processed Mg-HA composites was investigated using electrochemical methods in simulated body fluid. The results indicated an improvement in corrosion resistance for the composites compared to untreated AZ31B which was attributed to significant grain refinement upon friction stir process. On the other hand, incremental addition of HA had an opposing effect due to localized micro/nano-galvanic couples. As a result, friction stir process Mg-5 wt% HA composite demonstrated the highest corrosion resistance due to an optimum balance between beneficial effects of grain size refinement and limited number of local galvanic couples compared to the other friction stir process samples explored in the present work.

摘要

镁及其合金因其与天然骨相似的机械性能和可生物降解性而被认为是可消耗的生物植入物应用材料。然而,镁基材料在生物环境中的不可控腐蚀速率和有限的生物活性限制了它们的应用。有鉴于此,本研究的目的是探讨在 AZ31B 镁合金中添加类似于骨矿物质的羟基磷灰石 (HA,Ca(PO)OH) 及其对生物腐蚀行为的影响。采用基于搅拌摩擦加工的增材制造方法来制备 AZ31B 镁-HA 复合材料。将不同含量的 HA(5、10 和 20 wt%)掺入镁基体中。微观结构观察表明,搅拌摩擦处理后 α-Mg 晶粒尺寸显著减小。在搅拌摩擦过程中产生的热机械力作用下,HA 以微/纳米尺度存在于 α-Mg 基体中。通过在模拟体液中使用电化学方法研究了搅拌摩擦加工镁-HA 复合材料的腐蚀行为。结果表明,与未处理的 AZ31B 相比,复合材料的耐腐蚀性得到了提高,这归因于搅拌摩擦过程中晶粒细化的显著效果。另一方面,由于局部微/纳米电偶对的存在,HA 的递增添加产生了相反的效果。因此,与本工作中探索的其他搅拌摩擦处理样品相比,搅拌摩擦加工 Mg-5 wt% HA 复合材料由于晶粒细化的有益效果和局部电偶对数量有限之间的最佳平衡,表现出最高的耐腐蚀性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验