Díaz-Rovira Anna M, Martín Helena, Beuming Thijs, Díaz Lucía, Guallar Victor, Ray Soumya S
Barcelona Supercomputing Center, Jordi Girona 29, E-08034 Barcelona, Spain.
Nostrum Biodiscovery S.L., E-08029 Barcelona, Spain.
J Chem Inf Model. 2023 Mar 27;63(6):1668-1674. doi: 10.1021/acs.jcim.2c01270. Epub 2023 Mar 9.
Machine learning-based protein structure prediction algorithms, such as RosettaFold and AlphaFold2, have greatly impacted the structural biology field, arousing a fair amount of discussion around their potential role in drug discovery. While there are few preliminary studies addressing the usage of these models in virtual screening, none of them focus on the prospect of hit-finding in a real-world virtual screen with a model based on low prior structural information. In order to address this, we have developed an AlphaFold2 version where we exclude all structural templates with more than 30% sequence identity from the model-building process. In a previous study, we used those models in conjunction with state-of-the-art free energy perturbation methods and demonstrated that it is possible to obtain quantitatively accurate results. In this work, we focus on using these structures in rigid receptor-ligand docking studies. Our results indicate that using out-of-the-box Alphafold2 models is not an ideal scenario for virtual screening campaigns; in fact, we strongly recommend to include some post-processing modeling to drive the binding site into a more realistic holo model.
基于机器学习的蛋白质结构预测算法,如RosettaFold和AlphaFold2,对结构生物学领域产生了巨大影响,引发了关于它们在药物发现中潜在作用的大量讨论。虽然有一些初步研究探讨了这些模型在虚拟筛选中的应用,但它们都没有关注基于低先验结构信息的模型在真实虚拟筛选中寻找命中物的前景。为了解决这个问题,我们开发了一个AlphaFold2版本,在模型构建过程中排除了所有序列同一性超过30%的结构模板。在之前的一项研究中,我们将这些模型与最先进的自由能扰动方法结合使用,并证明可以获得定量准确的结果。在这项工作中,我们专注于在刚性受体-配体对接研究中使用这些结构。我们的结果表明,使用开箱即用的AlphaFold2模型并非虚拟筛选活动的理想方案;事实上,我们强烈建议进行一些后处理建模,以将结合位点驱动到更真实的全蛋白模型中。