Suppr超能文献

利用 AlphaFold2-RAVE 增强 AlphaFold2 进行蛋白质构象选择性药物发现。

Empowering AlphaFold2 for protein conformation selective drug discovery with AlphaFold2-RAVE.

机构信息

Institute for Physical Science and Technology, University of Maryland, College Park, United States.

University of Maryland Institute for Health Computing, Bethesda, United States.

出版信息

Elife. 2024 Sep 6;13:RP99702. doi: 10.7554/eLife.99702.

Abstract

Small-molecule drug design hinges on obtaining co-crystallized ligand-protein structures. Despite AlphaFold2's strides in protein native structure prediction, its focus on apo structures overlooks ligands and associated holo structures. Moreover, designing selective drugs often benefits from the targeting of diverse metastable conformations. Therefore, direct application of AlphaFold2 models in virtual screening and drug discovery remains tentative. Here, we demonstrate an AlphaFold2-based framework combined with all-atom enhanced sampling molecular dynamics and Induced Fit docking, named AF2RAVE-Glide, to conduct computational model-based small-molecule binding of metastable protein kinase conformations, initiated from protein sequences. We demonstrate the AF2RAVE-Glide workflow on three different mammalian protein kinases and their type I and II inhibitors, with special emphasis on binding of known type II kinase inhibitors which target the metastable classical DFG-out state. These states are not easy to sample from AlphaFold2. Here, we demonstrate how with AF2RAVE these metastable conformations can be sampled for different kinases with high enough accuracy to enable subsequent docking of known type II kinase inhibitors with more than 50% success rates across docking calculations. We believe the protocol should be deployable for other kinases and more proteins generally.

摘要

小分子药物设计取决于获得共结晶配体-蛋白结构。尽管 AlphaFold2 在蛋白质天然结构预测方面取得了进展,但它专注于apo 结构,忽略了配体和相关的 holo 结构。此外,设计选择性药物通常受益于针对多种亚稳态构象的靶向。因此,直接应用 AlphaFold2 模型进行虚拟筛选和药物发现仍然是不确定的。在这里,我们展示了一种基于 AlphaFold2 的框架,结合全原子增强采样分子动力学和诱导契合对接,称为 AF2RAVE-Glide,用于从蛋白质序列出发,对亚稳态蛋白激酶构象进行基于计算模型的小分子结合。我们在三种不同的哺乳动物蛋白激酶及其 I 型和 II 型抑制剂上展示了 AF2RAVE-Glide 工作流程,特别强调了已知靶向亚稳态经典 DFG-out 状态的 II 型激酶抑制剂的结合。这些状态不容易从 AlphaFold2 中采样。在这里,我们展示了如何使用 AF2RAVE 以足够高的精度对不同的激酶进行采样,以便随后以超过 50%的成功率对已知的 II 型激酶抑制剂进行对接计算。我们相信该方案应该可以部署到其他激酶和更多的蛋白质上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc80/11379456/f1429d5c9573/elife-99702-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验