Yu Mengxian, Jia Qingzhu, Wang Qiang, Luo Zheng-Hong, Yan Fangyou, Zhou Yin-Ning
School of Chemical Engineering and Material Science, Tianjin University of Science and Technology Tianjin 300457 P. R. China
Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 P. R. China
Chem Sci. 2024 Oct 4;15(43):18099-110. doi: 10.1039/d4sc05000b.
Rapidly advancing computer technology has demonstrated great potential in recent years to assist in the generation and discovery of promising molecular structures. Herein, we present a data science-centric "Design-Discovery-Evaluation" scheme for exploring novel polyimides (PIs) with desired dielectric constants (). A virtual library of over 100 000 synthetically accessible PIs is created by extending existing PIs. Within the framework of quantitative structure-property relationship (QSPR), a model sufficient to predict at multiple frequencies is developed with an of 0.9768, allowing further high-throughput screening of the prior structures with desired . Furthermore, the structural feature representation method of atomic adjacent group (AAG) is introduced, using which the reliability of high-throughput screening results is evaluated. This workflow identifies 9 novel PIs ( >5 at 10 Hz and glass transition temperatures between 250 °C and 350 °C) with potential applications in high-temperature capacitive energy storage, and confirms these promising findings by high-fidelity molecular dynamics (MD) simulations.
近年来,快速发展的计算机技术在协助生成和发现有前景的分子结构方面展现出了巨大潜力。在此,我们提出一种以数据科学为中心的“设计—发现—评估”方案,用于探索具有所需介电常数()的新型聚酰亚胺(PI)。通过扩展现有聚酰亚胺,创建了一个包含超过100,000种可合成的聚酰亚胺的虚拟库。在定量结构-性质关系(QSPR)框架内,开发了一个足以在多个频率下预测的模型,其相关系数为0.9768,从而能够进一步对具有所需的先前结构进行高通量筛选。此外,引入了原子相邻基团(AAG)的结构特征表示方法,用于评估高通量筛选结果的可靠性。该工作流程识别出9种新型聚酰亚胺(在10 Hz时>5且玻璃化转变温度在250°C至350°C之间),它们在高温电容式储能方面具有潜在应用,并通过高保真分子动力学(MD)模拟证实了这些有前景的发现。