Suppr超能文献

深度学习在 MRI 和 CT 检查中的身体部位分类。

Deep Learning Body Region Classification of MRI and CT Examinations.

机构信息

Clairity, Austin, TX, USA.

Enterprise Imaging Solutions, Change Healthcare, 10711 Cambie Road, Richmond, BC, V6X 3G5, Canada.

出版信息

J Digit Imaging. 2023 Aug;36(4):1291-1301. doi: 10.1007/s10278-022-00767-9. Epub 2023 Mar 9.

Abstract

This study demonstrates the high performance of deep learning in identification of body regions covering the entire human body from magnetic resonance (MR) and computed tomography (CT) axial images across diverse acquisition protocols and modality manufacturers. Pixel-based analysis of anatomy contained in image sets can provide accurate anatomic labeling. For this purpose, a convolutional neural network (CNN)-based classifier was developed to identify body regions in CT and MRI studies. Seventeen CT (18 MRI) body regions covering the entire human body were defined for the classification task. Three retrospective datasets were built for the AI model training, validation, and testing, with a balanced distribution of studies per body region. The test datasets originated from a different healthcare network than the train and validation datasets. Sensitivity and specificity of the classifier was evaluated for patient age, patient sex, institution, scanner manufacturer, contrast, slice thickness, MRI sequence, and CT kernel. The data included a retrospective cohort of 2891 anonymized CT cases (training, 1804 studies; validation, 602 studies; test, 485 studies) and 3339 anonymized MRI cases (training, 1911 studies; validation, 636 studies; test, 792 studies). Twenty-seven institutions from primary care hospitals, community hospitals, and imaging centers contributed to the test datasets. The data included cases of all sexes in equal proportions and subjects aged from 18 years old to + 90 years old. Image-level weighted sensitivity of 92.5% (92.1-92.8) for CT and 92.3% (92.0-92.5) for MRI and weighted specificity of 99.4% (99.4-99.5) for CT and 99.2% (99.1-99.2) for MRI were achieved. Deep learning models can classify CT and MR images by body region including lower and upper extremities with high accuracy.

摘要

这项研究表明,深度学习在从不同采集协议和模态制造商的磁共振(MR)和计算机断层扫描(CT)轴向图像中识别全身身体区域方面具有出色的性能。对图像集中包含的解剖结构进行基于像素的分析可以提供准确的解剖学标记。为此,开发了一种基于卷积神经网络(CNN)的分类器,用于识别 CT 和 MRI 研究中的身体区域。为分类任务定义了 17 个覆盖全身的 CT(18 个 MRI)身体区域。构建了三个用于 AI 模型训练、验证和测试的回顾性数据集,每个身体区域的研究分布均衡。测试数据集来自与训练和验证数据集不同的医疗保健网络。评估了分类器的患者年龄、患者性别、机构、扫描仪制造商、对比剂、层厚、MRI 序列和 CT 核的敏感性和特异性。数据包括 2891 例匿名 CT 病例(训练,1804 项研究;验证,602 项研究;测试,485 项研究)和 3339 例匿名 MRI 病例(训练,1911 项研究;验证,636 项研究;测试,792 项研究)的回顾性队列。来自初级保健医院、社区医院和影像中心的 27 家机构为测试数据集做出了贡献。数据包括所有性别比例相等的病例和年龄从 18 岁到+90 岁的受试者。CT 的图像级加权敏感性为 92.5%(92.1-92.8),MRI 的加权敏感性为 92.3%(92.0-92.5),CT 的加权特异性为 99.4%(99.4-99.5),MRI 的加权特异性为 99.2%(99.1-99.2)。深度学习模型可以通过身体区域(包括上下肢)对 CT 和 MR 图像进行分类,准确率很高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f6e/10407003/3cbce935ac7d/10278_2022_767_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验