Agrawal Vibhu, Udupa Jayaram, Tong Yubing, Torigian Drew
Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
Med Phys. 2020 Oct;47(10):5020-5031. doi: 10.1002/mp.14439. Epub 2020 Aug 20.
Automatic identification of consistently defined body regions in medical images is vital in many applications. In this paper, we describe a method to automatically demarcate the superior and inferior boundaries for neck, thorax, abdomen, and pelvis body regions in computed tomography (CT) images.
For any three-dimensional (3D) CT image I, following precise anatomic definitions, we denote the superior and inferior axial boundary slices of the neck, thorax, abdomen, and pelvis body regions by NS(I), NI(I), TS(I), TI(I), AS(I), AI(I), PS(I), and PI(I), respectively. Of these, by definition, AI(I) = PS(I), and so the problem reduces to demarcating seven body region boundaries. Our method consists of a two-step approach. In the first step, a convolutional neural network (CNN) is trained to classify each axial slice in I into one of nine categories: the seven body region boundaries, plus legs (defined as all axial slices inferior to PI(I)), and the none-of-the-above category. This CNN uses a multichannel approach to exploit the interslice contrast, providing the neural network with additional visual context at the body region boundaries. In the second step, to improve the predictions for body region boundaries that are very subtle and that exhibit low contrast, a recurrent neural network (RNN) is trained on features extracted by CNN, limited to a flexible window about the predictions from the CNN.
The method is evaluated on low-dose CT images from 442 patient scans, divided into training and testing sets with a ratio of 70:30. Using only the CNN, overall absolute localization error for NS(I), NI(I), TS(I), TI(I), AS(I), AI(I), and PI(I) expressed in terms of number of slices (nS) is (mean ± SD): 0.61 ± 0.58, 1.05 ± 1.13, 0.31 ± 0.46, 1.85 ± 1.96, 0.57 ± 2.44, 3.42 ± 3.16, and 0.50 ± 0.50, respectively. Using the RNN to refine the CNN's predictions for select classes improved the accuracy of TI(I) and AI(I) to: 1.35 ± 1.71 and 2.83 ± 2.75, respectively. This model outperforms the results achieved in our previous work by 2.4, 1.7, 3.1, 1.1, and 2 slices, respectively for TS(I), TI(I), AS(I), AI(I) = PS(I), and PI(I) classes with statistical significance. The model trained on low-dose CT images was also tested on diagnostic CT images for NS(I), NI(I), and TS(I) classes; the resulting errors were: 1.48 ± 1.33, 2.56 ± 2.05, and 0.58 ± 0.71, respectively.
Standardized body region definitions are a prerequisite for effective implementation of quantitative radiology, but the literature is severely lacking in the precise identification of body regions. The method presented in this paper significantly outperforms earlier works by a large margin, and the deviations of our results from ground truth are comparable to variations observed in manual labeling by experts. The solution presented in this work is critical to the adoption and employment of the idea of standardized body regions, and clears the path for development of applications requiring accurate demarcations of body regions. The work is indispensable for automatic anatomy recognition, delineation, and contouring for radiation therapy planning, as it not only automates an essential part of the process, but also removes the dependency on experts for accurately demarcating body regions in a study.
在许多医学图像应用中,自动识别一致定义的身体区域至关重要。在本文中,我们描述了一种在计算机断层扫描(CT)图像中自动划定颈部、胸部、腹部和骨盆身体区域上下边界的方法。
对于任何三维(3D)CT图像I,根据精确的解剖学定义,我们分别用NS(I)、NI(I)、TS(I)、TI(I)、AS(I)、AI(I)、PS(I)和PI(I)表示颈部、胸部、腹部和骨盆身体区域的上、下轴向边界切片。其中,根据定义,AI(I)=PS(I),因此问题简化为划定七个身体区域边界。我们的方法包括两步。第一步,训练一个卷积神经网络(CNN)将I中的每个轴向切片分类为九种类别之一:七个身体区域边界,加上腿部(定义为PI(I)以下的所有轴向切片),以及上述以外的类别。该CNN使用多通道方法来利用切片间的对比度,为神经网络在身体区域边界处提供额外的视觉上下文。第二步,为了改进对非常细微且对比度低的身体区域边界的预测,在CNN提取的特征上训练一个循环神经网络(RNN),该RNN限于围绕CNN预测的一个灵活窗口。
该方法在442例患者扫描获得的低剂量CT图像上进行评估,按70:30的比例分为训练集和测试集。仅使用CNN时,NS(I)、NI(I)、TS(I)、TI(I)、AS(I)、AI(I)和PI(I)的整体绝对定位误差(以切片数(nS)表示)为(均值±标准差):分别为0.61±0.58、1.05±1.13、0.31±0.46、1.85±1.96、0.57±2.44、3.42±3.16和0.50±0.50。使用RNN对选定类别的CNN预测进行细化,将TI(I)和AI(I)的准确率分别提高到:1.35±1.71和2.83±2.75。该模型在TS(I)、TI(I)、AS(I)、AI(I)=PS(I)和PI(I)类别上分别比我们之前的工作结果提高了2.4、1.7、3.1、1.1和2个切片,具有统计学意义。在低剂量CT图像上训练的模型也在诊断CT图像上对NS(I)、NI(I)和TS(I)类别进行了测试;得到的误差分别为:1.48±1.33、2.56±2.05和0.58±0.71。
标准化的身体区域定义是有效实施定量放射学的先决条件,但文献中严重缺乏对身体区域的精确识别。本文提出的方法比早期工作有显著的优势,并且我们的结果与真实情况的偏差与专家手动标注中观察到的变化相当。这项工作中提出的解决方案对于标准化身体区域概念的采用和应用至关重要,并为需要精确划定身体区域的应用开发扫清了道路。这项工作对于放射治疗计划中的自动解剖识别、描绘和轮廓绘制是不可或缺的,因为它不仅使该过程的一个重要部分自动化,而且消除了研究中对专家精确划定身体区域的依赖。