Xu Ziyang, Zhang Qian, Fan Chuanchuan, Xiao Meng, Yang Rong, Yao Yuan, Wu Yang, Nie Xiongfeng, Wang Hongying, Liu Wenguang
School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China.
Bioact Mater. 2023 Feb 22;26:64-76. doi: 10.1016/j.bioactmat.2023.02.020. eCollection 2023 Aug.
Developing a meniscus substitute mimicking the anisotropic mechanics (higher circumferential tensile modulus and lower compressive modulus) of native tissue remains a great challenge. In this work, based on the pendant group structure-dependent H-bonding strengthening mechanism, two kinds of amide-based H-bonding crosslinked hydrogels with distinct mechanical behaviors, that is, the flexible poly(N-acryloyl glycinamide) (PNAGA) and the ultra-stiff poly(N-acryloylsemicarbazide) (PNASC) hydrogels are employed to construct the biomimetic meniscus substitute. To this end, a gel microparticle-based self-thickening strategy is first proposed to fabricate PNASC (GMP-PNASC) high-modulus hydrogels skeleton by extrusion printing technology in mimicking the collagen fibers in native meniscus to resist the circumferential tensile stress. Then, the PNAGA hydrogel is infused into the PNASC skeleton to replicate the proteoglycan, providing a lower compressive modulus. By regulating the structural features at the interior and peripheral regions, the GMP-PNASC/PNAGA hydrogel meniscus scaffold with the higher tensile modulus (87.28 ± 6.06 MPa) and lower compressive modulus (2.11 ± 0.28 MPa) can be constructed. outcome at 12 weeks post-implantation of rabbit's medial meniscectomy model confirms the effects of GMP-PNASC/PNAGA meniscus scaffold on alleviating the wear of articular cartilage and ameliorating the development of osteoarthritis (OA).
开发一种能够模拟天然组织各向异性力学性能(较高的周向拉伸模量和较低的压缩模量)的半月板替代物仍然是一个巨大的挑战。在这项工作中,基于侧基结构依赖的氢键强化机制,两种具有不同力学行为的酰胺基氢键交联水凝胶,即柔性聚(N-丙烯酰甘氨酰胺)(PNAGA)和超硬聚(N-丙烯酰氨基脲)(PNASC)水凝胶被用于构建仿生半月板替代物。为此,首先提出了一种基于凝胶微粒的自增稠策略,通过挤压印刷技术制备PNASC(GMP-PNASC)高模量水凝胶骨架,以模拟天然半月板中的胶原纤维来抵抗周向拉应力。然后,将PNAGA水凝胶注入PNASC骨架中以复制蛋白聚糖,从而提供较低的压缩模量。通过调节内部和周边区域的结构特征,可以构建具有较高拉伸模量(87.28±6.06兆帕)和较低压缩模量(2.11±0.28兆帕)的GMP-PNASC/PNAGA水凝胶半月板支架。兔内侧半月板切除术模型植入12周后的结果证实了GMP-PNASC/PNAGA半月板支架在减轻关节软骨磨损和改善骨关节炎(OA)发展方面的作用。