文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications.

作者信息

Lin Qixiong, Peng Yueyou, Wen Yanyan, Li Xiaoqiong, Du Donglian, Dai Weibin, Tian Wei, Meng Yanfeng

机构信息

The Ninth Clinical Medical School of Shanxi Medical University, Taiyuan, Shanxi 030009, China.

Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China.

出版信息

Beilstein J Nanotechnol. 2023 Feb 27;14:262-279. doi: 10.3762/bjnano.14.24. eCollection 2023.


DOI:10.3762/bjnano.14.24
PMID:36895440
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9989677/
Abstract

Immune clearance and insufficient targeting have limited the efficacy of existing therapeutic strategies for cancer. Toxic side effects and individual differences in response to treatment have further limited the benefits of clinical treatment for patients. Biomimetic cancer cell membrane-based nanotechnology has provided a new approach for biomedicine to overcome these obstacles. Biomimetic nanoparticles exhibit various effects (e.g., homotypic targeting, prolonging drug circulation, regulating the immune system, and penetrating biological barriers) after encapsulation by cancer cell membranes. The sensitivity and specificity of diagnostic methods will also be improved by utilizing the properties of cancer cell membranes. In this review, different properties and functions of cancer cell membranes are presented. Utilizing these advantages, nanoparticles can exhibit unique therapeutic capabilities in various types of diseases, such as solid tumors, hematological malignancies, immune system diseases, and cardiovascular diseases. Furthermore, cancer cell membrane-encapsulated nanoparticles show improved effectiveness and efficiency in combination with current diagnostic and therapeutic methods, which will contribute to the development of individualized treatments. This strategy has promising clinical translation prospects, and the associated challenges are discussed.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/080f/9989677/43c19be9a483/Beilstein_J_Nanotechnol-14-262-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/080f/9989677/035f53016498/Beilstein_J_Nanotechnol-14-262-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/080f/9989677/8dab04720f7c/Beilstein_J_Nanotechnol-14-262-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/080f/9989677/0d29a9ee8fdf/Beilstein_J_Nanotechnol-14-262-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/080f/9989677/017bb2f02f70/Beilstein_J_Nanotechnol-14-262-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/080f/9989677/e6aeacbaeb61/Beilstein_J_Nanotechnol-14-262-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/080f/9989677/66b3f2952853/Beilstein_J_Nanotechnol-14-262-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/080f/9989677/43c19be9a483/Beilstein_J_Nanotechnol-14-262-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/080f/9989677/035f53016498/Beilstein_J_Nanotechnol-14-262-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/080f/9989677/8dab04720f7c/Beilstein_J_Nanotechnol-14-262-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/080f/9989677/0d29a9ee8fdf/Beilstein_J_Nanotechnol-14-262-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/080f/9989677/017bb2f02f70/Beilstein_J_Nanotechnol-14-262-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/080f/9989677/e6aeacbaeb61/Beilstein_J_Nanotechnol-14-262-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/080f/9989677/66b3f2952853/Beilstein_J_Nanotechnol-14-262-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/080f/9989677/43c19be9a483/Beilstein_J_Nanotechnol-14-262-g008.jpg

相似文献

[1]
Recent progress in cancer cell membrane-based nanoparticles for biomedical applications.

Beilstein J Nanotechnol. 2023-2-27

[2]
Hybrid cell membrane-coated nanoparticles: A multifunctional biomimetic platform for cancer diagnosis and therapy.

Acta Biomater. 2020-8

[3]
Stem cell membrane, stem cell-derived exosomes and hybrid stem cell camouflaged nanoparticles: A promising biomimetic nanoplatforms for cancer theranostics.

J Control Release. 2022-8

[4]
Stem cell membrane-coated abiotic nanomaterials for biomedical applications.

J Control Release. 2022-11

[5]
Construction of Biomimetic-Responsive Nanocarriers and their Applications in Tumor Targeting.

Anticancer Agents Med Chem. 2022

[6]
Biomimetic hybrid membrane-based nanoplatforms: synthesis, properties and biomedical applications.

Nanoscale Horiz. 2020-9-1

[7]
Immune Cell Membrane-Coated Biomimetic Nanoparticles for Targeted Cancer Therapy.

Small. 2021-3

[8]
Hybrid Membrane-Coated Biomimetic Nanoparticles (HM@BNPs): A Multifunctional Nanomaterial for Biomedical Applications.

Biomacromolecules. 2021-8-9

[9]
Recent Advances in Cell Membrane-Derived Biomimetic Nanotechnology for Cancer Immunotherapy.

Adv Healthc Mater. 2021-3

[10]
Biomimetic Targeted Theranostic Nanoparticles for Breast Cancer Treatment.

Molecules. 2022-10-1

引用本文的文献

[1]
Application of nanomedicines in tumor immunotherapy.

J Mol Cell Biol. 2025-6-12

[2]
Carcinomembrane-Camouflaged Perfluorochemical Dual-Layer Nanopolymersomes Bearing Indocyanine Green and Camptothecin Effectuate Targeting Photochemotherapy of Cancer.

ACS Biomater Sci Eng. 2024-10-14

[3]
Iron Oxide Nanoparticles: Parameters for Optimized Photoconversion Efficiency in Synergistic Cancer Treatment.

J Funct Biomater. 2024-7-25

[4]
Recent updates in applications of nanomedicine for the treatment of hepatic fibrosis.

Beilstein J Nanotechnol. 2024-8-23

[5]
Multistage Self-Assembled Nanomaterials for Cancer Immunotherapy.

Molecules. 2023-11-24

[6]
New insights into nanosystems for non-small-cell lung cancer: diagnosis and treatment.

RSC Adv. 2023-6-28

本文引用的文献

[1]
Triple-negative breast cancer drug resistance, durable efficacy, and cure: how advanced biological insights and emerging drug modalities could transform progress.

Expert Opin Ther Targets. 2022-6

[2]
Bioactive cytomembrane@poly(citrate-peptide)-miRNA365 nanoplatform with immune escape and homologous targeting for colon cancer therapy.

Mater Today Bio. 2022-5-17

[3]
Enhancement of antitumor immunotherapy using mitochondria-targeted cancer cell membrane-biomimetic MOF-mediated sonodynamic therapy and checkpoint blockade immunotherapy.

J Nanobiotechnology. 2022-5-14

[4]
Biomimetic nanoparticles for effective mild temperature photothermal therapy and multimodal imaging.

J Control Release. 2022-7

[5]
Engineered PD-1/TIGIT dual-activating cell-membrane nanoparticles with dexamethasone act synergistically to shape the effector T cell/Treg balance and alleviate systemic lupus erythematosus.

Biomaterials. 2022-6

[6]
Advancements in cell membrane camouflaged nanoparticles: A bioinspired platform for cancer therapy.

J Control Release. 2022-6

[7]
Dissolving microneedles delivering cancer cell membrane coated nanoparticles for cancer immunotherapy.

RSC Adv. 2021-3-11

[8]
Targeted delivery of a PROTAC induced PDEδ degrader by a biomimetic drug delivery system for enhanced cytotoxicity against pancreatic cancer cells.

Am J Cancer Res. 2022-3-15

[9]
CRPC Membrane-Camouflaged, Biomimetic Nanosystem for Overcoming Castration-Resistant Prostate Cancer by Cellular Vehicle-Aided Tumor Targeting.

Int J Mol Sci. 2022-3-26

[10]
Tumor cell membrane-camouflaged responsive nanoparticles enable MRI-guided immuno-chemodynamic therapy of orthotopic osteosarcoma.

Bioact Mater. 2022-1-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索