Suppr超能文献

解释数据驱动湍流建模中迁移学习的物理原理。

Explaining the physics of transfer learning in data-driven turbulence modeling.

作者信息

Subel Adam, Guan Yifei, Chattopadhyay Ashesh, Hassanzadeh Pedram

机构信息

Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA.

Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX 77005, USA.

出版信息

PNAS Nexus. 2023 Jan 23;2(3):pgad015. doi: 10.1093/pnasnexus/pgad015. eCollection 2023 Mar.

Abstract

Transfer learning (TL), which enables neural networks (NNs) to generalize out-of-distribution via targeted re-training, is becoming a powerful tool in scientific machine learning (ML) applications such as weather/climate prediction and turbulence modeling. Effective TL requires knowing (1) how to re-train NNs? and (2) what physics are learned during TL? Here, we present novel analyses and a framework addressing (1)-(2) for a broad range of multi-scale, nonlinear, dynamical systems. Our approach combines spectral (e.g. Fourier) analyses of such systems with spectral analyses of convolutional NNs, revealing physical connections between the systems and what the NN learns (a combination of low-, high-, band-pass filters and Gabor filters). Integrating these analyses, we introduce a general framework that identifies the best re-training procedure for a given problem based on physics and NN theory. As test case, we explain the physics of TL in subgrid-scale modeling of several setups of 2D turbulence. Furthermore, these analyses show that in these cases, the shallowest convolution layers are the best to re-train, which is consistent with our physics-guided framework but is against the common wisdom guiding TL in the ML literature. Our work provides a new avenue for optimal and explainable TL, and a step toward fully explainable NNs, for wide-ranging applications in science and engineering, such as climate change modeling.

摘要

迁移学习(TL)能使神经网络(NNs)通过有针对性的再训练实现对分布外数据的泛化,正成为科学机器学习(ML)应用中的强大工具,如天气/气候预测和湍流建模。有效的迁移学习需要知道:(1)如何对神经网络进行再训练?以及(2)迁移学习过程中学到了哪些物理知识?在此,我们针对广泛的多尺度、非线性动力系统,提出了新颖的分析方法和一个解决(1) - (2)问题的框架。我们的方法将此类系统的频谱分析(如傅里叶分析)与卷积神经网络的频谱分析相结合,揭示了系统与神经网络所学内容之间的物理联系(低通、高通、带通滤波器和加窗滤波器的组合)。整合这些分析,我们引入了一个通用框架,该框架基于物理和神经网络理论为给定问题确定最佳的再训练程序。作为测试案例,我们解释了二维湍流几种设置的亚网格尺度建模中迁移学习的物理原理。此外,这些分析表明,在这些情况下,最浅的卷积层是最适合再训练的,这与我们基于物理的框架一致,但与机器学习文献中指导迁移学习的普遍观点相悖。我们的工作为优化且可解释的迁移学习提供了新途径,朝着完全可解释的神经网络迈出了一步,可用于科学和工程中的广泛应用,如气候变化建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3db/9991455/8179631269a5/pgad015f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验