Postgraduate Program of Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil.
Federal University of Ceara, Sobral, Brazil.
Physiol Meas. 2023 Mar 10;44(3). doi: 10.1088/1361-6579/acbc09.
. Automatic detection of Electrocardiograms (ECG) quality is fundamental to minimize costs and risks related to delayed diagnosis due to low ECG quality. Most algorithms to assess ECG quality include non-intuitive parameters. Also, they were developed using data non-representative of a real-world scenario, in terms of pathological ECGs and overrepresentation of low-quality ECG. Therefore, we introduce an algorithm to assess 12-lead ECG quality, Noise Automatic Classification Algorithm (NACA) developed in Telehealth Network of Minas Gerais (TNMG).. NACA estimates a signal-to-noise ratio (SNR) for each ECG lead, where 'signal' is an estimated heartbeat template, and 'noise' is the discrepancy between the template and the ECG heartbeat. Then, clinically-inspired rules based on SNR are used to classify the ECG as acceptable or unacceptable. NACA was compared with Quality Measurement Algorithm (QMA), the winner of Computing in Cardiology Challenge 2011 (ChallengeCinC) by using five metrics: sensitivity (Se), specificity (Sp), positive predictive value (PPV),, and cost reduction resulting from adoption of the algorithm. Two datasets were used for validation: TestTNMG, consisting of 34 310 ECGs received by TNMG (1% unacceptable and 50% pathological); ChallengeCinC, consisting of 1000 ECGs (23% unacceptable, higher than real-world scenario).. Both algorithms reached a similar performance on ChallengeCinC, although NACA performed considerably better than QMA in TestTNMG (Se = 0.89 versus 0.21; Sp = 0.99 versus 0.98; PPV = 0.59 versus 0.08;= 0.76 versus 0.16 and cost reduction 2.3 ± 1.8% versus 0.3 ± 0.3%, respectively).. Implementing of NACA in a telecardiology service results in evident health and financial benefits for the patients and the healthcare system.
. 自动检测心电图 (ECG) 的质量对于降低因 ECG 质量低而导致的诊断延误的成本和风险至关重要。大多数评估 ECG 质量的算法都包括非直观的参数。此外,它们是使用非代表性的真实世界场景的数据开发的,就病理性 ECG 和低质量 ECG 的过度表示而言。因此,我们引入了一种算法来评估 12 导联 ECG 的质量,即 Minas Gerais 远程医疗网络的噪声自动分类算法 (NACA)。NACA 为每个 ECG 导联估计信噪比 (SNR),其中“信号”是估计的心跳模板,“噪声”是模板与 ECG 心跳之间的差异。然后,使用基于 SNR 的临床启发式规则将 ECG 分类为可接受或不可接受。使用五个指标:灵敏度 (Se)、特异性 (Sp)、阳性预测值 (PPV)、、和采用算法导致的成本降低,将 NACA 与 2011 年计算心脏病学挑战赛 (ChallengeCinC) 的获胜者质量测量算法 (QMA) 进行了比较。使用了两个数据集进行验证:TestTNMG,包含来自 TNMG 的 34310 份 ECG(1%不可接受,50%病理性);ChallengeCinC,包含 1000 份 ECG(23%不可接受,高于真实世界场景)。两种算法在 ChallengeCinC 上的性能相似,尽管 NACA 在 TestTNMG 上的表现明显优于 QMA(Se = 0.89 对 0.21;Sp = 0.99 对 0.98;PPV = 0.59 对 0.08;= 0.76 对 0.16 和成本降低 2.3 ± 1.8% 对 0.3 ± 0.3%,分别)。在远程心脏病学服务中实施 NACA 可为患者和医疗保健系统带来明显的健康和经济利益。