Suppr超能文献

Liposomes as a model for olfactory cells: changes in membrane potential in response to various odorants.

作者信息

Nomura T, Kurihara K

机构信息

Tokyo Laboratories of Kao Corporation, Japan.

出版信息

Biochemistry. 1987 Sep 22;26(19):6135-40. doi: 10.1021/bi00393a028.

Abstract

Various odorants were found to depolarize azolectin liposomes. The results obtained are as follows. (1) Changes in the membrane potential of azolectin liposomes in response to various odorants were monitored by measuring changes in the fluorescence intensity of 3,3'-dipropylthiocarbocyanine iodide [disS-C3(5)]. Ten odorants examined increased the fluorescence intensity of the liposome-dye suspensions in a dose-dependent manner, which indicates that odorants depolarize the liposomes. Concentrations of odorants that depolarized the liposomes greatly varied among the odorants. There existed a good correlation between the minimum concentrations of odorants to depolarize the liposomes and the thresholds of respective odorants in the frog or porcine olfactory responses. (2) Addition of sphingomyelin (SM) to azolectin led to a large enhancement of depolarizations by nonanol, citral, and n-amyl acetate. The results indicate that lipid composition of liposomes is one of the factors that control the sensitivity to odorants. (3) Odorants changed the membrane fluidity of the liposomes, which was monitored by changes in the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH). The membrane fluidity was changed in concentration ranges of odorants similar to those where the membrane potential changes occurred, which suggests that changes in the membrane fluidity are related to generation of the membrane potential changes. (4) Changes in the membrane potential in response to odorants were electrically measured with the planar lipid bilayer made of an azolectin-SM (2:1 w/w) mixture. It was shown that odorants (nonanol, citral, and n-amyl acetate) depolarized the planar lipid bilayer.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验