Rommens Konstantijn Tom, Saeys Mark
Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052Gent, Belgium.
Chem Rev. 2023 May 10;123(9):5798-5858. doi: 10.1021/acs.chemrev.2c00508. Epub 2023 Mar 10.
For nearly a century, the Fischer-Tropsch (FT) reaction has been subject of intense debate. Various molecular views on the active sites and on the reaction mechanism have been presented for both Co- and Fe-based FT reactions. In the last 15 years, the emergence of a surface-science- and molecular-modeling-based bottom-up approach has brought this molecular picture a step closer. Theoretical models provided a structural picture of the Co catalyst particles. Recent surface science experiments and density functional theory (DFT) calculations highlighted the importance of realistic surface coverages, which can induce surface reconstruction and impact the stability of reaction intermediates. For Co-based FTS, detailed microkinetic simulations and mechanistic experiments are moving toward a consensus about the active sites and the reaction mechanism. The dynamic phase evolution of Fe-based catalysts under the reaction conditions complicates identification of the surface structure and the active sites. New techniques can help tackle the combinatorial complexity in these systems. Experimental and DFT studies have addressed the mechanism for Fe-based catalysts; the absence of a clear molecular picture of the active sites, however, limits the development of a molecular view of the mechanism. Finally, direct CO hydrogenation to long-chain hydrocarbons could present a sustainable pathway for FT synthesis.
近一个世纪以来,费托(FT)反应一直是激烈争论的主题。对于钴基和铁基费托反应,人们提出了关于活性位点和反应机理的各种分子观点。在过去15年中,基于表面科学和分子建模的自下而上方法的出现,使这种分子图景更进了一步。理论模型给出了钴催化剂颗粒的结构图景。最近的表面科学实验和密度泛函理论(DFT)计算突出了实际表面覆盖率的重要性,其可诱导表面重构并影响反应中间体的稳定性。对于钴基费托合成,详细的微观动力学模拟和机理实验正朝着就活性位点和反应机理达成共识的方向发展。铁基催化剂在反应条件下的动态相演变使表面结构和活性位点的识别变得复杂。新技术有助于解决这些体系中的组合复杂性问题。实验和DFT研究已经探讨了铁基催化剂的机理;然而,由于缺乏关于活性位点清晰的分子图景,限制了对该机理分子观点的发展。最后,将一氧化碳直接加氢转化为长链烃可能为费托合成提供一条可持续的途径。