Suppr超能文献

通过铁基串联催化剂调整氧键合将一氧化碳转化为C醇

Transformation of CO to C alcohols by tailoring the oxygen bonding via Fe-based tandem catalyst.

作者信息

Wang Wenhang, Guo Xiangyu, Wang Yang, Lin Simin, Gao Xinhua, Liang Jie, Zhang Jinqiang, Xie Jinghao, Jiang Hu, Cao Fengliang, Chen Yongjie, Yang Guohui, Frauenheim Thomas, Wang Mingqing, Xing Tao, Lu Yiwu, Liu Qiang, Novoselov Kostya S, Tsubaki Noritatsu, Wu Mingbo

机构信息

State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao, China.

Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Toyama, Japan.

出版信息

Nat Commun. 2025 Aug 6;16(1):7265. doi: 10.1038/s41467-025-62727-5.

Abstract

Direct conversion of CO into valuable organic products is probably the most important but challenging issue for global sustainability efforts. Metal carbides are promising as vital catalytic components in achieving this goal. Understanding the evolution of chemical orbitals and the corresponding energy levels on their interfaces are essential for targeted product synthesis. In this study, we discover that a highly active FeCo alloy carbide has a distinctive oxygen-bonding ability to regulate the evolution of oxygen-containing reaction intermediates. Combining with the copper/zinc/aluminum catalytic component, the designed tandem catalyst allows for the extremely high C alcohols selectivity (49.1 percent) and space-time yield (245.7 milligram per gram catalyst per hour) at a CO conversion of 51.1 percent. The excellent catalyst stability (>1000 hours) and potential economic viability make this process promising in eliminating carbon emissions at industrial application scale.

摘要

将一氧化碳直接转化为有价值的有机产品可能是全球可持续发展努力中最重要但也最具挑战性的问题。金属碳化物有望成为实现这一目标的关键催化成分。了解其界面上化学轨道的演化以及相应的能级对于有针对性的产品合成至关重要。在本研究中,我们发现一种高活性的铁钴合金碳化物具有独特的氧键合能力,可调节含氧化合物反应中间体的演化。与铜/锌/铝催化成分相结合,所设计的串联催化剂在一氧化碳转化率为51.1%时,可实现极高的C醇选择性(49.1%)和时空产率(每克催化剂每小时245.7毫克)。优异的催化剂稳定性(>1000小时)和潜在的经济可行性使该过程在工业应用规模上消除碳排放方面具有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0407/12328738/eeb95c3bdeeb/41467_2025_62727_Fig1_HTML.jpg

相似文献

1
Transformation of CO to C alcohols by tailoring the oxygen bonding via Fe-based tandem catalyst.
Nat Commun. 2025 Aug 6;16(1):7265. doi: 10.1038/s41467-025-62727-5.
3
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
6
Home treatment for mental health problems: a systematic review.
Health Technol Assess. 2001;5(15):1-139. doi: 10.3310/hta5150.
7
Organic Synthesis Away from Equilibrium: Contrathermodynamic Transformations Enabled by Excited-State Electron Transfer.
Acc Chem Res. 2024 Jul 2;57(13):1827-1838. doi: 10.1021/acs.accounts.4c00227. Epub 2024 Jun 21.
9
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.

本文引用的文献

1
Hydrogenation of CO for sustainable fuel and chemical production.
Science. 2025 Feb 28;387(6737):eadn9388. doi: 10.1126/science.adn9388.
2
Stabilizing CoC with HO and K promoter for CO hydrogenation to C hydrocarbons.
Sci Adv. 2023 Jun 16;9(24):eadg0167. doi: 10.1126/sciadv.adg0167.
3
Molecular Views on Fischer-Tropsch Synthesis.
Chem Rev. 2023 May 10;123(9):5798-5858. doi: 10.1021/acs.chemrev.2c00508. Epub 2023 Mar 10.
4
Operando studies reveal active Cu nanograins for CO electroreduction.
Nature. 2023 Feb;614(7947):262-269. doi: 10.1038/s41586-022-05540-0. Epub 2023 Feb 8.
5
Physical mixing of a catalyst and a hydrophobic polymer promotes CO hydrogenation through dehydration.
Science. 2022 Jul 22;377(6604):406-410. doi: 10.1126/science.abo0356. Epub 2022 Jul 21.
7
Direct conversion of CO to a jet fuel over CoFe alloy catalysts.
Innovation (Camb). 2021 Sep 29;2(4):100170. doi: 10.1016/j.xinn.2021.100170. eCollection 2021 Nov 28.
8
Do we need a new science-policy interface for food systems?
Science. 2021 Sep 3;373(6559):1093-1095. doi: 10.1126/science.abj5263. Epub 2021 Sep 1.
9
A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products.
Science. 2021 Feb 5;371(6529):610-613. doi: 10.1126/science.abb3649.
10
Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst.
Nat Commun. 2020 Dec 22;11(1):6395. doi: 10.1038/s41467-020-20214-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验