Suppr超能文献

解读尺寸和形状对镍上一氧化碳甲烷化反应结构敏感性的影响。

Deciphering Size and Shape Effects on the Structure Sensitivity of the CO Methanation Reaction on Nickel.

作者信息

Spanò Gabriele, Ferri Matteo, Cheula Raffaele, Monai Matteo, Weckhuysen Bert M, Maestri Matteo

机构信息

Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa, 34, 20156 Milano, Italy.

Inorganic Chemistry and Catalysis Group, Institute for Circular and Sustainable Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.

出版信息

ACS Catal. 2025 May 2;15(10):8194-8203. doi: 10.1021/acscatal.4c08084. eCollection 2025 May 16.

Abstract

This study advances the understanding of structure sensitivity in CO methanation over nickel-based catalysts by highlighting the combined influence of the metal nanoparticle (NP) size and shape on catalytic performance. Density functional theory (DFT) calculations of the metal nanoparticle structure and activity provide the theoretical underpinnings of the experimentally observed structure sensitivity of CO methanation over nickel-based catalysts. This is achieved by taking into account the diversity of shapes of metal nanoparticles (NPs) under the reaction conditions and the corresponding distribution of active sites at different metal NP sizes. We built a large ensemble of Ni metal NPs with different shapes and sizes in the range of 0.5-10 nm and quantified the distribution of the potential active sites for each NP. We then computed the reaction rate over each of these active sites on the metal surface to evaluate the activity as a function of the metal NP diameter. Our calculations reveal that the activity at the active sites located at the edge between the Ni(100) and Ni(111) facets largely dominates the overall observed activity. Furthermore, metal NPs can be categorized into families based on their shape, specifically the fraction of exposed Ni(100) facets. The observed maximum in turnover frequency (TOF) for 2-3 nm metal NPs is linked to the dominance of NP families with high Ni(100) fractions. Conversely, experimental conditions favoring NP families with higher Ni(111) fractions result in a hockey stick trend in the TOF. These findings resolve key debates on structure sensitivity in CO methanation and offer broader applicability to other structure-sensitive reactions, such as ammonia synthesis, decomposition, and Fischer-Tropsch synthesis, where similar sensitivities have been widely debated.

摘要

本研究通过突出金属纳米颗粒(NP)尺寸和形状对催化性能的综合影响,推进了对镍基催化剂上CO甲烷化反应中结构敏感性的理解。金属纳米颗粒结构与活性的密度泛函理论(DFT)计算为实验观察到的镍基催化剂上CO甲烷化反应的结构敏感性提供了理论基础。这是通过考虑反应条件下金属纳米颗粒(NPs)形状的多样性以及不同金属NP尺寸下活性位点的相应分布来实现的。我们构建了大量尺寸在0.5 - 10 nm范围内、具有不同形状的Ni金属NP集合,并对每个NP潜在活性位点的分布进行了量化。然后,我们计算了金属表面这些活性位点上的反应速率,以评估活性与金属NP直径的函数关系。我们的计算结果表明,位于Ni(100)和Ni(111)晶面之间边缘处的活性位点的活性在很大程度上主导了整体观察到的活性。此外,金属NP可以根据其形状,特别是暴露的Ni(100)晶面的比例,分为不同的类别。观察到的2 - 3 nm金属NP的周转频率(TOF)最大值与高Ni(100)比例的NP类别占主导地位有关。相反,有利于高Ni(111)比例NP类别的实验条件导致TOF呈现曲棍球棒趋势。这些发现解决了关于CO甲烷化反应中结构敏感性的关键争议,并为其他结构敏感反应,如氨合成、分解和费托合成,提供了更广泛的适用性,在这些反应中,类似的敏感性也一直存在广泛争议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d11/12090210/7c34c9c56f5c/cs4c08084_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验