School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
Shanghai Public Health Clinical Center, Fudan University, Shanghai 201500, China.
J Inorg Biochem. 2023 May;242:112175. doi: 10.1016/j.jinorgbio.2023.112175. Epub 2023 Mar 3.
Compounds modified with selenium atom as potential antibacterial agents have been exploited to combat the nondrug-resistant bacterial infection. In this study, we designed and synthesized four ruthenium complexes retouching of selenium-ether. Fortunately, those four ruthenium complexes shown excellent antibacterial bioactive (MIC: 1.56-6.25 μg/mL) against Staphylococcus aureus (S. aureus), and the most active complex Ru(II)-4 could kill S. aureus by targeting the membrane integrity and avoid the bacteria to evolve drug resistance. Moreover, Ru(II)-4 was found to significantly inhibit the formation of biofilms and biofilm eradicate capacity. In toxicity experiments, Ru(II)-4 exhibited poor hemolysis and low mammalian toxicity. To illustrate the antibacterial mechanism: we conducted scanning electron microscope (SEM), fluorescent staining, membrane rupture and DNA leakage assays. Those results demonstrated that Ru(II)-4 could destroy the integrity of bacterial cell membrane. Furthermore, both G. mellonella wax worms infection model and mouse skin infection model were established to evaluate the antibacterial activity of Ru(II)-4 in vivo, the results indicated that Ru(II)-4 was a potential candidate for combating S. aureus infections, and almost non-toxic to mouse tissue. Thus, all the results indicated that introducing selenium-atom into ruthenium compounds were a promising strategy for developing interesting antibacterial agents.
作为潜在的抗菌剂,已开发出用硒原子修饰的化合物来对抗非耐药细菌感染。在这项研究中,我们设计并合成了四个硒醚修饰的钌配合物。令人高兴的是,这四个钌配合物对金黄色葡萄球菌(S. aureus)表现出优异的抗菌生物活性(MIC:1.56-6.25μg/mL),最有效的配合物 Ru(II)-4 可以通过靶向细胞膜完整性来杀死 S. aureus,从而避免细菌产生耐药性。此外,Ru(II)-4 被发现可以显著抑制生物膜的形成和生物膜的清除能力。在毒性实验中,Ru(II)-4 表现出较差的溶血和低哺乳动物毒性。为了阐明其抗菌机制:我们进行了扫描电子显微镜(SEM)、荧光染色、膜破裂和 DNA 泄漏测定。结果表明 Ru(II)-4 可以破坏细菌细胞膜的完整性。此外,我们还建立了 G. mellonella 蜡虫感染模型和小鼠皮肤感染模型来评估 Ru(II)-4 在体内的抗菌活性,结果表明 Ru(II)-4 是一种有潜力的抗金黄色葡萄球菌感染的候选药物,且对小鼠组织几乎无毒。因此,所有结果表明,将硒原子引入钌化合物是开发新型抗菌剂的一种很有前途的策略。