Suppr超能文献

基于自适应混沌高斯变异蛇优化算法的 SEMWSNs 有效覆盖方法。

An efficient coverage method for SEMWSNs based on adaptive chaotic Gaussian variant snake optimization algorithm.

机构信息

College of mechanical and electrical engineering, Shihezi University, Shihezi 832000, China.

College of information science and technology, Shihezi University, Shihezi 832000, China.

出版信息

Math Biosci Eng. 2023 Jan;20(2):3191-3215. doi: 10.3934/mbe.2023150. Epub 2022 Dec 2.

Abstract

Soil element monitoring wireless sensor networks (SEMWSNs) are widely used in soil element monitoring agricultural activities. SEMWSNs monitor changes in soil elemental content during agriculture products growing through nodes. Based on the feedback from the nodes, farmers adjust irrigation and fertilization strategies on time, thus promoting the economic growth of crops. The critical issue in SEMWSNs coverage studies is to achieve maximum coverage of the entire monitoring field by adopting a smaller number of sensor nodes. In this study, a unique adaptive chaotic Gaussian variant snake optimization algorithm (ACGSOA) is proposed for solving the above problem, which also has the advantages of solid robustness, low algorithmic complexity, and fast convergence. A new chaotic operator is proposed in this paper to optimize the position parameters of individuals, enhancing the convergence speed of the algorithm. Moreover, an adaptive Gaussian variant operator is also designed in this paper to effectively avoid SEMWSNs from falling into local optima during the deployment process. Simulation experiments are designed to compare ACGSOA with other widely used metaheuristics, namely snake optimizer (SO), whale optimization algorithm (WOA), artificial bee colony algorithm (ABC), and fruit fly optimization algorithm (FOA). The simulation results show that the performance of ACGSOA has been dramatically improved. On the one hand, ACGSOA outperforms other methods in terms of convergence speed, and on the other hand, the coverage rate is improved by 7.20%, 7.32%, 7.96%, and 11.03% compared with SO, WOA, ABC, and FOA, respectively.

摘要

土壤元素监测无线传感器网络(SEMWSNs)广泛应用于土壤元素监测农业活动中。SEMWSNs 通过节点监测农产品生长过程中土壤元素含量的变化。基于节点的反馈,农民及时调整灌溉和施肥策略,从而促进作物的经济增长。SEMWSNs 覆盖研究的关键问题是通过采用较少的传感器节点来实现对整个监测区域的最大覆盖。在本研究中,提出了一种独特的自适应混沌高斯变异蛇优化算法(ACGSOA)来解决上述问题,该算法还具有坚固的鲁棒性、低算法复杂度和快速收敛的优点。本文提出了一种新的混沌算子来优化个体的位置参数,提高算法的收敛速度。此外,本文还设计了一种自适应高斯变异算子,有效地避免了 SEMWSNs 在部署过程中陷入局部最优。设计了仿真实验来比较 ACGSOA 与其他广泛使用的元启发式算法,即蛇优化算法(SO)、鲸鱼优化算法(WOA)、人工蜂群算法(ABC)和果蝇优化算法(FOA)。仿真结果表明,ACGSOA 的性能得到了显著提高。一方面,ACGSOA 在收敛速度方面优于其他方法,另一方面,与 SO、WOA、ABC 和 FOA 相比,覆盖率分别提高了 7.20%、7.32%、7.96%和 11.03%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验