Suppr超能文献

慢性子宫内膜炎的精准医学:使用深度学习模型的计算机辅助诊断

Precision Medicine for Chronic Endometritis: Computer-Aided Diagnosis Using Deep Learning Model.

作者信息

Mihara Masaya, Yasuo Tadahiro, Kitaya Kotaro

机构信息

Infertility Center, Kouseikai Mihara Hospital/Katsura Mihara Clinic, Kyoto 615-8227, Japan.

Department of Obstetrics and Gynecology, Otsu City Hospital, Otsu 520-0804, Japan.

出版信息

Diagnostics (Basel). 2023 Mar 1;13(5):936. doi: 10.3390/diagnostics13050936.

Abstract

Chronic endometritis (CE) is a localized mucosal infectious and inflammatory disorder marked by infiltration of CD138(+) endometrial stromal plasmacytes (ESPC). CE is drawing interest in the field of reproductive medicine because of its association with female infertility of unknown etiology, endometriosis, repeated implantation failure, recurrent pregnancy loss, and multiple maternal/newborn complications. The diagnosis of CE has long relied on somewhat painful endometrial biopsy and histopathologic examinations combined with immunohistochemistry for CD138 (IHC-CD138). With IHC-CD138 only, CE may be potentially over-diagnosed by misidentification of endometrial epithelial cells, which constitutively express CD138, as ESPCs. Fluid hysteroscopy is emerging as an alternative, less-invasive diagnostic tool that can visualize the whole uterine cavity in real-time and enables the detection of several unique mucosal findings associated with CE. The biases in the hysteroscopic diagnosis of CE; however, are the inter-observer and intra-observer disagreements on the interpretation of the endoscopic findings. Additionally, due to the variances in the study designs and adopted diagnostic criteria, there exists some dissociation in the histopathologic and hysteroscopic diagnosis of CE among researchers. To address these questions, novel dual immunohistochemistry for CD138 and another plasmacyte marker multiple myeloma oncogene 1 are currently being tested. Furthermore, computer-aided diagnosis using a deep learning model is being developed for more accurate detection of ESPCs. These approaches have the potential to contribute to the reduction in human errors and biases, the improvement of the diagnostic performance of CE, and the establishment of unified diagnostic criteria and standardized clinical guidelines for the disease.

摘要

慢性子宫内膜炎(CE)是一种局限性黏膜感染性炎症性疾病,其特征为CD138(+)子宫内膜间质浆细胞(ESPC)浸润。由于CE与不明原因的女性不孕症、子宫内膜异位症、反复种植失败、复发性流产以及多种母婴并发症相关,因此在生殖医学领域受到关注。长期以来,CE的诊断依赖于有些痛苦的子宫内膜活检以及组织病理学检查,并结合CD138免疫组织化学(IHC-CD138)。仅依靠IHC-CD138,CE可能会因将组成性表达CD138的子宫内膜上皮细胞误识别为ESPC而被过度诊断。液体宫腔镜检查正在成为一种替代的、侵入性较小的诊断工具,它可以实时可视化整个子宫腔,并能够检测到与CE相关的几种独特的黏膜表现。然而,CE宫腔镜诊断中的偏差在于观察者之间和观察者内部对内镜检查结果解释的不一致。此外,由于研究设计和采用的诊断标准存在差异,研究人员之间在CE的组织病理学和宫腔镜诊断方面存在一些分歧。为了解决这些问题,目前正在测试针对CD138和另一种浆细胞标志物多发性骨髓瘤癌基因1的新型双重免疫组织化学。此外,正在开发使用深度学习模型的计算机辅助诊断,以更准确地检测ESPC。这些方法有可能减少人为错误和偏差,提高CE的诊断性能,并为该疾病建立统一的诊断标准和标准化临床指南。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38f9/10000436/7cfc0451c8d2/diagnostics-13-00936-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验