School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Wenyuan Road 9, Nanjing 210023, China.
Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, Nanjing University of Posts and Telecommunications, Wenyuan Road 9, Nanjing 210023, China.
Int J Environ Res Public Health. 2023 Feb 27;20(5):4265. doi: 10.3390/ijerph20054265.
Carbon dioxide (CO) emissions are considered a significant factor that results in climate change. To better support the formulation of effective policies to reduce CO emissions, specific types of important emission patterns need to be considered. Motivated by the flock pattern that exists in the domain of moving object trajectories, this paper extends this concept to a geographical flock pattern and aims to discover such patterns that might exist in CO emission data. To achieve this, a spatiotemporal graph (STG)-based approach is proposed. Three main parts are involved in the proposed approach: generating attribute trajectories from CO emission data, generating STGs from attribute trajectories, and discovering specific types of geographical flock patterns. Generally, eight different types of geographical flock patterns are derived based on two criteria, i.e., the high-low attribute values criterion and the extreme number-duration values criterion. A case study is conducted based on the CO emission data in China on two levels: the province level and the geographical region level. The results demonstrate the effectiveness of the proposed approach in discovering geographical flock patterns of CO emissions and provide potential suggestions and insights to assist policy making and the coordinated control of carbon emissions.
二氧化碳(CO)排放被认为是导致气候变化的一个重要因素。为了更好地支持制定减少 CO 排放的有效政策,需要考虑特定类型的重要排放模式。受动物运动轨迹领域中群体模式的启发,本文将这一概念扩展到地理群体模式,并旨在发现 CO 排放数据中可能存在的此类模式。为此,提出了一种基于时空图(STG)的方法。该方法主要包括三个部分:从 CO 排放数据中生成属性轨迹,从属性轨迹生成 STG,以及发现特定类型的地理群体模式。通常,基于两个标准(即高低属性值标准和极值持续时间标准),可以从 STG 中推导出八种不同类型的地理群体模式。基于中国 CO 排放数据,在省级和地理区域级两个层面上进行了案例研究。结果表明,该方法在发现 CO 排放的地理群体模式方面具有有效性,并为政策制定和碳排放的协调控制提供了潜在的建议和见解。