Suppr超能文献

基于深度学习和迁移学习技术的自动猴痘皮肤损伤检测。

Automated Monkeypox Skin Lesion Detection Using Deep Learning and Transfer Learning Techniques.

机构信息

Department of Computer Science, Information Technology and Computer Science, Yarmouk University, Irbid 211633, Jordan.

Department Industrial Engineering and Engineering Management, Western Michigan University, Kalamazoo, MI 49008, USA.

出版信息

Int J Environ Res Public Health. 2023 Mar 1;20(5):4422. doi: 10.3390/ijerph20054422.

Abstract

The current outbreak of monkeypox (mpox) has become a major public health concern because of the quick spread of this disease across multiple countries. Early detection and diagnosis of mpox is crucial for effective treatment and management. Considering this, the purpose of this research was to detect and validate the best performing model for detecting mpox using deep learning approaches and classification models. To achieve this goal, we evaluated the performance of five common pretrained deep learning models (VGG19, VGG16, ResNet50, MobileNetV2, and EfficientNetB3) and compared their accuracy levels when detecting mpox. The performance of the models was assessed with metrics (i.e., the accuracy, recall, precision, and F1-score). Our experimental results demonstrate that the MobileNetV2 model had the best classification performance with an accuracy level of 98.16%, a recall of 0.96, a precision of 0.99, and an F1-score of 0.98. Additionally, validation of the model with different datasets showed that the highest accuracy of 0.94% was achieved using the MobileNetV2 model. Our findings indicate that the MobileNetV2 method outperforms previous models described in the literature in mpox image classification. These results are promising, as they show that machine learning techniques could be used for the early detection of mpox. Our algorithm was able to achieve a high level of accuracy in classifying mpox in both the training and test sets, making it a potentially valuable tool for quick and accurate diagnosis in clinical settings.

摘要

当前的猴痘(mpox)疫情爆发,由于该疾病在多个国家迅速传播,成为了一个主要的公共卫生关注点。早期发现和诊断 mpox 对于有效治疗和管理至关重要。考虑到这一点,本研究的目的是使用深度学习方法和分类模型来检测和验证性能最佳的 mpox 检测模型。为了实现这一目标,我们评估了五种常见的预训练深度学习模型(VGG19、VGG16、ResNet50、MobileNetV2 和 EfficientNetB3)的性能,并比较了它们在检测 mpox 时的准确性水平。模型的性能通过指标(即准确性、召回率、精度和 F1 分数)进行评估。我们的实验结果表明,MobileNetV2 模型的分类性能最佳,准确率为 98.16%,召回率为 0.96,精度为 0.99,F1 分数为 0.98。此外,使用不同数据集对模型进行验证表明,MobileNetV2 模型的准确率最高,达到 0.94%。我们的研究结果表明,MobileNetV2 方法在 mpox 图像分类方面优于文献中描述的先前模型。这些结果令人鼓舞,因为它们表明机器学习技术可用于 mpox 的早期检测。我们的算法在训练集和测试集中都能够实现高水平的 mpox 分类准确性,使其成为临床环境中快速准确诊断的潜在有价值工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d60d/10001976/ce1665b6b56d/ijerph-20-04422-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验