Suppr超能文献

基于元启发式优化的深度神经网络集成用于猴痘疾病检测。

Metaheuristics optimization-based ensemble of deep neural networks for Mpox disease detection.

作者信息

Asif Sohaib, Zhao Ming, Tang Fengxiao, Zhu Yusen, Zhao Baokang

机构信息

School of Computer Science and Engineering, Central South University, Changsha, China.

School of Computer Science and Engineering, Central South University, Changsha, China.

出版信息

Neural Netw. 2023 Oct;167:342-359. doi: 10.1016/j.neunet.2023.08.035. Epub 2023 Aug 23.

Abstract

The rising number of cases of human Mpox has emerged as a major global concern due to the daily increase of cases in several countries. The disease presents various skin symptoms in infected individuals, making it crucial to promptly identify and isolate them to prevent widespread community transmission. Rapid determination and isolation of infected individuals are therefore essential to curb the spread of the disease. Most research in the detection of Mpox disease has utilized convolutional neural network (CNN) models and ensemble methods. However, to the best of our knowledge, none have utilized a meta-heuristic-based ensemble approach. To address this gap, we propose a novel metaheuristics optimization-based weighted average ensemble model (MO-WAE) for detecting Mpox disease. We first train three transfer learning (TL)-based CNNs (DenseNet201, MobileNet, and DenseNet169) by adding additional layers to improve their classification strength. Next, we use a weighted average ensemble technique to fuse the predictions from each individual model, and the particle swarm optimization (PSO) algorithm is utilized to assign optimized weights to each model during the ensembling process. By using this approach, we obtain more accurate predictions than individual models. To gain a better understanding of the regions indicating the onset of Mpox, we performed a Gradient Class Activation Mapping (Grad-CAM) analysis to explain our model's predictions. Our proposed MO-WAE ensemble model was evaluated on a publicly available Mpox dataset and achieved an impressive accuracy of 97.78%. This outperforms state-of-the-art (SOTA) methods on the same dataset, thereby providing further evidence of the efficacy of our proposed model.

摘要

由于多个国家的病例数每日都在增加,人类猴痘病例数的上升已成为全球主要关注点。该疾病在受感染个体中呈现出各种皮肤症状,因此迅速识别并隔离他们对于防止疾病在社区广泛传播至关重要。因此,快速确定并隔离受感染个体对于遏制疾病传播至关重要。大多数关于猴痘疾病检测的研究都使用了卷积神经网络(CNN)模型和集成方法。然而,据我们所知,尚无研究采用基于元启发式算法的集成方法。为了填补这一空白,我们提出了一种用于检测猴痘疾病的基于元启发式优化的加权平均集成模型(MO-WAE)。我们首先通过添加额外的层来训练三个基于迁移学习(TL)的CNN(DenseNet201、MobileNet和DenseNet169),以提高它们的分类能力。接下来,我们使用加权平均集成技术融合每个单独模型的预测结果,并在集成过程中利用粒子群优化(PSO)算法为每个模型分配优化权重。通过这种方法,我们获得了比单个模型更准确的预测结果。为了更好地了解表明猴痘发病的区域,我们进行了梯度类激活映射(Grad-CAM)分析来解释我们模型的预测结果。我们提出的MO-WAE集成模型在一个公开可用的猴痘数据集上进行了评估,取得了令人印象深刻的97.78%的准确率。这在同一数据集上优于当前的先进(SOTA)方法,从而进一步证明了我们提出的模型的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验