Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
Department of Biomedical Engineering, Boston University, Boston, MA 02218, USA.
Int J Mol Sci. 2023 Mar 1;24(5):4724. doi: 10.3390/ijms24054724.
Hypertrophic cardiomyopathy is one of the most common inherited cardiomyopathies and a leading cause of sudden cardiac death in young adults. Despite profound insights into the genetics, there is imperfect correlation between mutation and clinical prognosis, suggesting complex molecular cascades driving pathogenesis. To investigate this, we performed an integrated quantitative multi-omics (proteomic, phosphoproteomic, and metabolomic) analysis to illuminate the early and direct consequences of mutations in myosin heavy chain in engineered human induced pluripotent stem-cell-derived cardiomyocytes relative to late-stage disease using patient myectomies. We captured hundreds of differential features, which map to distinct molecular mechanisms modulating mitochondrial homeostasis at the earliest stages of pathobiology, as well as stage-specific metabolic and excitation-coupling maladaptation. Collectively, this study fills in gaps from previous studies by expanding knowledge of the initial responses to mutations that protect cells against the early stress prior to contractile dysfunction and overt disease.
肥厚型心肌病是最常见的遗传性心肌病之一,也是年轻人心脏性猝死的主要原因。尽管对遗传学有了深刻的了解,但突变与临床预后之间存在不完善的相关性,这表明复杂的分子级联反应驱动着发病机制。为了研究这一点,我们进行了综合定量多组学(蛋白质组学、磷酸化蛋白质组学和代谢组学)分析,使用患者的心肌切除术,相对于晚期疾病,阐明了肌球蛋白重链突变在工程化的人诱导多能干细胞衍生的心肌细胞中的早期和直接后果。我们捕获了数百个差异特征,这些特征映射到不同的分子机制,这些机制在病理生物学的最早阶段调节线粒体的动态平衡,以及特定阶段的代谢和兴奋偶联适应不良。总的来说,这项研究通过扩展对突变的初始反应的知识,填补了之前研究的空白,这些突变在收缩功能障碍和明显疾病之前保护细胞免受早期应激。