Tsai Shang-Tien, Tang Wei-Cheng, Wei Yeu-Kuen, Wu Kevin C-W
Program of Green Materials and Precision Devices, National Taiwan University, Taipei 10617, Taiwan.
Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 30011, Taiwan.
Materials (Basel). 2023 Mar 1;16(5):2040. doi: 10.3390/ma16052040.
From a porous structure perspective, the one-stage de novo synthesis method and impregnation method were applied to synthesize Ag(I) ion-containing ZIF-8 samples. With the de novo synthesis method, Ag(I) ions could be located inside micropores or adsorbed on the external surface of the ZIF-8 by selecting AgNO in water or AgCO in ammonia solution as precursors, respectively. The ZIF-8 confining Ag(I) ion exhibited a much lower constant releasing rate than the Ag(I) ion adsorbed on the ZIF-8 surface in artificial seawater. As such, strong diffusion resistance in association with the confinement effect is contributed by ZIF-8's micropore. On the other hand, the release of Ag(I) ions adsorbed on the external surface was diffusion limited. Therefore, the releasing rate would reach a maximum not increasing with Ag(I) loading in the ZIF-8 sample.
从多孔结构的角度来看,采用一步法从头合成法和浸渍法合成了含Ag(I)离子的ZIF-8样品。采用从头合成法时,通过分别选择水中的AgNO或氨溶液中的AgCO作为前驱体,Ag(I)离子可以位于微孔内部或吸附在ZIF-8的外表面。在人工海水中,包封Ag(I)离子的ZIF-8的恒定释放速率远低于吸附在ZIF-8表面的Ag(I)离子。因此,ZIF-8的微孔导致了与限制效应相关的强扩散阻力。另一方面,吸附在外表面的Ag(I)离子的释放受扩散限制。因此,释放速率将达到最大值,且不会随着ZIF-8样品中Ag(I)负载量的增加而增加。