Suppr超能文献

原位观察揭示了通过粒子附着实现的金纳米棒的五重孪晶参与生长。

In Situ Observations Reveal the Five-fold Twin-Involved Growth of Gold Nanorods by Particle Attachment.

作者信息

Sun Qi, Boddapati Loukya, Wang Linan, Li Junjie, Deepak Francis Leonard

机构信息

School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China.

Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China.

出版信息

Nanomaterials (Basel). 2023 Feb 21;13(5):796. doi: 10.3390/nano13050796.

Abstract

Crystallization plays a critical role in determining crystal size, purity and morphology. Therefore, uncovering the growth dynamics of nanoparticles (NPs) atomically is important for the controllable fabrication of nanocrystals with desired geometry and properties. Herein, we conducted in situ atomic-scale observations on the growth of Au nanorods (NRs) by particle attachment within an aberration-corrected transmission electron microscope (AC-TEM). The results show that the attachment of spherical colloidal Au NPs with a size of about 10 nm involves the formation and growth of neck-like (NL) structures, followed by five-fold twin intermediate states and total atomic rearrangement. The statistical analyses show that the length and diameter of Au NRs can be well regulated by the number of tip-to-tip Au NPs and the size of colloidal Au NPs, respectively. The results highlight five-fold twin-involved particle attachment in spherical Au NPs with a size of 3-14 nm, and provide insights into the fabrication of Au NRs using irradiation chemistry.

摘要

结晶在决定晶体大小、纯度和形态方面起着关键作用。因此,从原子层面揭示纳米颗粒(NPs)的生长动力学对于可控制备具有所需几何形状和性质的纳米晶体至关重要。在此,我们在一台像差校正透射电子显微镜(AC-TEM)内通过颗粒附着对金纳米棒(NRs)的生长进行了原位原子尺度观察。结果表明,尺寸约为10 nm的球形胶体金纳米颗粒的附着涉及颈状(NL)结构的形成与生长,随后是五次孪晶中间态和完全原子重排。统计分析表明,金纳米棒的长度和直径可分别通过尖端对尖端金纳米颗粒的数量和胶体金纳米颗粒的尺寸得到很好的调控。这些结果突出了尺寸为3 - 14 nm的球形金纳米颗粒中涉及五次孪晶的颗粒附着,并为利用辐照化学制备金纳米棒提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0da/10005194/6d5c4eb7134a/nanomaterials-13-00796-g001.jpg

相似文献

1
In Situ Observations Reveal the Five-fold Twin-Involved Growth of Gold Nanorods by Particle Attachment.
Nanomaterials (Basel). 2023 Feb 21;13(5):796. doi: 10.3390/nano13050796.
2
Particle Attachment Growth of Au@Ag Core-Shell Nanocuboids.
Nano Lett. 2023 May 10;23(9):3963-3970. doi: 10.1021/acs.nanolett.3c00726. Epub 2023 Apr 27.
3
Surfactant Layers on Gold Nanorods.
Acc Chem Res. 2023 May 16;56(10):1204-1212. doi: 10.1021/acs.accounts.3c00101. Epub 2023 May 8.
4
Interactions and Attachment Pathways between Functionalized Gold Nanorods.
ACS Nano. 2017 Feb 28;11(2):1633-1640. doi: 10.1021/acsnano.6b07398. Epub 2017 Jan 31.
5
Synthesis of hybrid CdS-Au colloidal nanostructures.
J Phys Chem B. 2006 Dec 21;110(50):25421-9. doi: 10.1021/jp065594s.
6
Selective shortening of single-crystalline gold nanorods by mild oxidation.
J Am Chem Soc. 2006 Apr 26;128(16):5352-3. doi: 10.1021/ja060447t.
7
High quality gold nanorods and nanospheres for surface-enhanced Raman scattering detection of 2,4-dichlorophenoxyacetic acid.
Nanotechnology. 2012 Dec 14;23(49):495710. doi: 10.1088/0957-4484/23/49/495710. Epub 2012 Nov 13.
8
Green synthesis of size controllable gold nanoparticles.
Spectrochim Acta A Mol Biomol Spectrosc. 2013 Dec;116:539-45. doi: 10.1016/j.saa.2013.07.077. Epub 2013 Aug 6.
9
Size-dependent theoretical and experimental photothermal conversion efficiency of spherical gold nanoparticles.
Photodiagnosis Photodyn Ther. 2022 Sep;39:102979. doi: 10.1016/j.pdpdt.2022.102979. Epub 2022 Jun 18.
10
TEM Tracking of Disconnection Motion and Atomic Cooperative Reorientation in the Oriented Attachment of Pt Nanoparticles.
Nano Lett. 2024 May 8;24(18):5618-5624. doi: 10.1021/acs.nanolett.4c01017. Epub 2024 Apr 25.

引用本文的文献

本文引用的文献

2
Diffusive Formation of Au/Ag Alloy Nanoparticles of Governed Composition in Glass.
Nanomaterials (Basel). 2022 Nov 26;12(23):4202. doi: 10.3390/nano12234202.
5
Kinetic Observations on Crystal Nucleation and Growth.
Chem Rev. 2022 Dec 14;122(23):16911-16982. doi: 10.1021/acs.chemrev.1c01067. Epub 2022 Nov 8.
6
Heterogeneous Trimetallic Nanoparticles as Catalysts.
Chem Rev. 2022 Mar 23;122(6):6795-6849. doi: 10.1021/acs.chemrev.1c00493. Epub 2022 Mar 9.
7
Li MgGe S : The First Alkali and Alkaline-Earth Diamond-Like Infrared Nonlinear Optical Material with Exceptional Large Band Gap.
Angew Chem Int Ed Engl. 2021 Nov 2;60(45):24131-24136. doi: 10.1002/anie.202107613. Epub 2021 Aug 13.
8
Unconventional-Phase Crystalline Materials Constructed from Multiscale Building Blocks.
Chem Rev. 2021 May 26;121(10):5830-5888. doi: 10.1021/acs.chemrev.0c01047. Epub 2021 Apr 2.
9
Borates: A Rich Source for Optical Materials.
Chem Rev. 2021 Feb 10;121(3):1130-1202. doi: 10.1021/acs.chemrev.0c00796. Epub 2020 Dec 13.
10
In situ generation of sub-10 nm silver nanowires under electron beam irradiation in a TEM.
Chem Commun (Camb). 2020 Apr 30;56(35):4765-4768. doi: 10.1039/d0cc00909a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验