Suppr超能文献

被动式无线压力梯度测量系统用于流体流动分析。

Passive Wireless Pressure Gradient Measurement System for Fluid Flow Analysis.

机构信息

Center for Wireless Integrated MicroSensing and Systems (WIMS2), ECE Division, EECS Department, University of Michigan, Ann Arbor, MI 48109, USA.

Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, OH 45219, USA.

出版信息

Sensors (Basel). 2023 Feb 24;23(5):2525. doi: 10.3390/s23052525.

Abstract

Using distributed MEMS pressure sensors to measure small flow rates in high resistance fluidic channels is fraught with challenges far beyond the performance of the pressure sensing element. In a typical core-flood experiment, which may last several months, flow-induced pressure gradients are generated in porous rock core samples wrapped in a polymer sheath. Measuring these pressure gradients along the flow path requires high resolution pressure measurement while contending with difficult test conditions such as large bias pressures (up to 20 bar) and temperatures (up to 125 °C), as well as the presence of corrosive fluids. This work is directed at a system for using passive wireless inductive-capacitive (LC) pressure sensors that are distributed along the flow path to measure the pressure gradient. The sensors are wirelessly interrogated with readout electronics placed exterior to the polymer sheath for continuous monitoring of experiments. Using microfabricated pressure sensors that are smaller than ø15 × 3.0 mm, an LC sensor design model for minimizing pressure resolution, accounting for sensor packaging and environmental artifacts is investigated and experimentally validated. A test setup, built to provide fluid-flow pressure differentials to LC sensors with conditions that mimic placement of the sensors within the wall of the sheath, is used to test the system. Experimental results show the microsystem operating over full-scale pressure range of 20,700 mbar and temperatures up to 125 °C, while achieving pressure resolution of <1 mbar, and resolving gradients of 10-30 mL/min, which are typical in core-flood experiments.

摘要

使用分布式 MEMS 压力传感器测量高阻力流道中的小流量会遇到远远超出压力传感元件性能的挑战。在典型的岩心驱替实验中,可能需要持续数月,在聚合物护套中包裹的多孔岩心样品中会产生流动引起的压力梯度。沿着流动路径测量这些压力梯度需要高分辨率的压力测量,同时还需要应对大偏置压力(高达 20 巴)和温度(高达 125°C)以及腐蚀性流体等困难的测试条件。这项工作旨在开发一种使用沿流动路径分布的无源无线感应式电容 (LC) 压力传感器系统来测量压力梯度。使用置于聚合物护套外部的读出电子设备对传感器进行无线询问,以实现对实验的连续监测。使用小于 ø15 × 3.0 毫米的微制造压力传感器,研究并实验验证了一种用于最小化压力分辨率的 LC 传感器设计模型,该模型考虑了传感器封装和环境因素的影响。为了模拟传感器在护套壁内的位置,建立了一个测试装置,为 LC 传感器提供流体流动压力差,并用于测试系统。实验结果表明,该微系统在全压力范围 20700mbar 和高达 125°C 的温度下工作,同时实现了<1mbar 的压力分辨率,并能够分辨 10-30mL/min 的梯度,这是岩心驱替实验中的典型值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbd6/10007361/f1a763af2b73/sensors-23-02525-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验