Suppr超能文献

一种用于具有能量收集功能的D2D-MEC网络中动态任务卸载的多智能体强化学习算法。

A Multi-Agent RL Algorithm for Dynamic Task Offloading in D2D-MEC Network with Energy Harvesting.

作者信息

Mi Xin, He Huaiwen, Shen Hong

机构信息

School of Computer, Zhongshan Institute, University of Electronic Science and Technology of China, Zhognshan 528400, China.

Engineering and Technology, Central Queensland University, Brisbane 4000, Australia.

出版信息

Sensors (Basel). 2024 Apr 26;24(9):2779. doi: 10.3390/s24092779.

Abstract

Delay-sensitive task offloading in a device-to-device assisted mobile edge computing (D2D-MEC) system with energy harvesting devices is a critical challenge due to the dynamic load level at edge nodes and the variability in harvested energy. In this paper, we propose a joint dynamic task offloading and CPU frequency control scheme for delay-sensitive tasks in a D2D-MEC system, taking into account the intricacies of multi-slot tasks, characterized by diverse processing speeds and data transmission rates. Our methodology involves meticulous modeling of task arrival and service processes using queuing systems, coupled with the strategic utilization of D2D communication to alleviate edge server load and prevent network congestion effectively. Central to our solution is the formulation of average task delay optimization as a challenging nonlinear integer programming problem, requiring intelligent decision making regarding task offloading for each generated task at active mobile devices and CPU frequency adjustments at discrete time slots. To navigate the intricate landscape of the extensive discrete action space, we design an efficient multi-agent DRL learning algorithm named MAOC, which is based on MAPPO, to minimize the average task delay by dynamically determining task-offloading decisions and CPU frequencies. MAOC operates within a centralized training with decentralized execution (CTDE) framework, empowering individual mobile devices to make decisions autonomously based on their unique system states. Experimental results demonstrate its swift convergence and operational efficiency, and it outperforms other baseline algorithms.

摘要

在具有能量收集设备的设备到设备辅助移动边缘计算(D2D-MEC)系统中,由于边缘节点处的动态负载水平以及收集能量的可变性,对延迟敏感的任务卸载是一项关键挑战。在本文中,考虑到多时隙任务的复杂性,其特点是具有不同的处理速度和数据传输速率,我们针对D2D-MEC系统中的延迟敏感任务提出了一种联合动态任务卸载和CPU频率控制方案。我们的方法包括使用排队系统对任务到达和服务过程进行细致建模,以及战略性地利用D2D通信来减轻边缘服务器负载并有效防止网络拥塞。我们解决方案的核心是将平均任务延迟优化表述为一个具有挑战性的非线性整数规划问题,这需要针对活动移动设备上生成的每个任务的卸载以及在离散时隙进行CPU频率调整做出明智决策。为了在广泛的离散动作空间的复杂环境中导航,我们设计了一种名为MAOC的高效多智能体深度强化学习算法,该算法基于MAPPO,通过动态确定任务卸载决策和CPU频率来最小化平均任务延迟。MAOC在集中训练分散执行(CTDE)框架内运行,使各个移动设备能够根据其独特的系统状态自主做出决策。实验结果证明了其快速收敛性和运行效率,并且它优于其他基线算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e890/11086306/ef70492f2c74/sensors-24-02779-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验