Suppr超能文献

利用近红外光谱法开发预测模型,定量分析. 中的大麻素含量。

Developing Prediction Models Using Near-Infrared Spectroscopy to Quantify Cannabinoid Content in .

机构信息

Agriculture Victoria Research, AgriBio Centre, AgriBio, Melbourne, VIC 3083, Australia.

School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia.

出版信息

Sensors (Basel). 2023 Feb 27;23(5):2607. doi: 10.3390/s23052607.

Abstract

Cannabis is commercially cultivated for both therapeutic and recreational purposes in a growing number of jurisdictions. The main cannabinoids of interest are cannabidiol (CBD) and delta-9 tetrahydrocannabidiol (THC), which have applications in different therapeutic treatments. The rapid, nondestructive determination of cannabinoid levels has been achieved using near-infrared (NIR) spectroscopy coupled to high-quality compound reference data provided by liquid chromatography. However, most of the literature describes prediction models for the decarboxylated cannabinoids, e.g., THC and CBD, rather than naturally occurring analogues, tetrahydrocannabidiolic acid (THCA) and cannabidiolic acid (CBDA). The accurate prediction of these acidic cannabinoids has important implications for quality control for cultivators, manufacturers and regulatory bodies. Using high-quality liquid chromatography-mass spectroscopy (LCMS) data and NIR spectra data, we developed statistical models including principal component analysis (PCA) for data quality control, partial least squares regression (PLS-R) models to predict cannabinoid concentrations for 14 different cannabinoids and partial least squares discriminant analysis (PLS-DA) models to characterise cannabis samples into high-CBDA, high-THCA and even-ratio classes. This analysis employed two spectrometers, a scientific grade benchtop instrument (Bruker MPA II-Multi-Purpose FT-NIR Analyzer) and a handheld instrument (VIAVI MicroNIR Onsite-W). While the models from the benchtop instrument were generally more robust (99.4-100% accuracy prediction), the handheld device also performed well (83.1-100% accuracy prediction) with the added benefits of portability and speed. In addition, two cannabis inflorescence preparation methods were evaluated: finely ground and coarsely ground. The models generated from coarsely ground cannabis provided comparable predictions to that of the finely ground but represent significant timesaving in terms of sample preparation. This study demonstrates that a portable NIR handheld device paired with LCMS quantitative data can provide accurate cannabinoid predictions and potentially be of use for the rapid, high-throughput, nondestructive screening of cannabis material.

摘要

大麻在越来越多的司法管辖区中被商业化种植,用于治疗和娱乐目的。主要的感兴趣的大麻素是大麻二酚 (CBD) 和 delta-9 四氢大麻酚 (THC),它们在不同的治疗应用中有应用。使用近红外 (NIR) 光谱结合高效液相色谱提供的高质量化合物参考数据,已经实现了大麻素水平的快速、非破坏性测定。然而,大多数文献描述的是用于脱羧大麻素(例如 THC 和 CBD)的预测模型,而不是天然存在的类似物,四氢大麻酸 (THCA) 和大麻二酚酸 (CBDA)。准确预测这些酸性大麻素对于种植者、制造商和监管机构的质量控制具有重要意义。使用高质量的液相色谱-质谱 (LCMS) 数据和 NIR 光谱数据,我们开发了统计模型,包括用于数据质量控制的主成分分析 (PCA)、用于预测 14 种不同大麻素浓度的偏最小二乘回归 (PLS-R) 模型和用于将大麻样本分类为高 CBDA、高 THCA 甚至比例类的偏最小二乘判别分析 (PLS-DA) 模型。该分析采用了两台光谱仪,一台是台式科学级仪器(Bruker MPA II-Multi-Purpose FT-NIR 分析仪)和一台手持式仪器(VIAVI MicroNIR Onsite-W)。虽然台式仪器的模型通常更稳健(准确率预测为 99.4-100%),但手持式仪器的表现也很好(准确率预测为 83.1-100%),具有便携性和速度的优势。此外,还评估了两种大麻花序制备方法:细磨和粗磨。从粗磨大麻中生成的模型提供了与细磨相当的预测,但在样品制备方面节省了大量时间。这项研究表明,与 LCMS 定量数据相结合的便携式 NIR 手持式设备可以提供准确的大麻素预测,并有可能用于大麻材料的快速、高通量、非破坏性筛选。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a473/10007171/0b1ed715d784/sensors-23-02607-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验